First-Order Tableau

The different versions of tableau for first-order logic differ in particular in the treatment of variables by the tableau rules. The first variant I consider is standard first-order tableau where variables are instantiated by ground terms. For this section, if not stated otherwise, all considered formulas are closed and do not contain equations.

3.6.1 Definition (γ -, δ -Formulas)

A formula ϕ is called a γ -formula if ϕ is a formula $\forall x_{S}.\psi$ or $\neg \exists x_{S}.\psi$.

A formula ϕ is called a δ -formula if ϕ is a formula $\exists x_S.\psi$ or $\neg \forall x_S.\psi$.

3.6.2 Definition (Direct Standard Tableau Descendant)

Given a $\gamma\text{-}$ or $\delta\text{-}\text{formula}\ \phi\text{, its direct descendants are:}$

$$\begin{array}{c|c} \gamma & \text{Descendant } \gamma(t) \\ \hline \forall x_{\mathcal{S}}.\psi & \psi\{x_{\mathcal{S}} \mapsto t\} \\ \neg \exists x_{\mathcal{S}}.\psi & \neg \psi\{x_{\mathcal{S}} \mapsto t\} \\ & \text{for a ground term } t \in \mathcal{T}_{\mathcal{S}}(\Sigma) \end{array}$$

δ	Descendant $\delta(c)$
$\exists \mathbf{x}_{\mathcal{S}}.\psi$	$\psi\{\mathbf{x}_{\mathcal{S}}\mapsto\mathbf{c}\}$
$\neg \forall \mathbf{x}_{\mathcal{S}}.\psi$	$\neg \psi \{ \mathbf{x}_{\mathcal{S}} \mapsto \mathbf{c} \}$
	for a fresh constant $c \in \mathcal{T}_{\mathcal{S}}(\Sigma)$

A sequence of formulas $(\phi_1, \phi_2, ...)$ is called *closed* if there are two formulas ϕ_i and ϕ_j in the sequence where $\phi_i = \text{comp}(\phi_j)$.

A state is *closed* if all its formula sequences are closed.

Given a formula ϕ , the initial tableau for ϕ is {(($\neg \phi$), { c_1, \ldots, c_k })} where the c_i are constants for each sort *S* such that ϕ contains a variable of sort *S* but no ground term *t* in ϕ has sort *S*.

A first-order formula ϕ occurring in some sequence in *N* of a pair (M, J) is called *open*

if in case ϕ is an α -formula not both direct descendants are already part of *M*,

if it is a β -formula none of its descendants is part of *M*,

if it is a δ -formula no direct descendant is part of *M*, and

if it is a γ -formula not all direct descendants are part of M where only ground terms are considered that can be built from constants J and function symbols in M such that their depth is bounded by the maximal term depth occurring in M.

Tableau Rules

 $\begin{array}{ll} \alpha\text{-Expansion} & \textit{N} \uplus \{((\phi_1,\ldots,\psi,\ldots,\phi_n),\textit{J})\} \Rightarrow_{\mathsf{FT}} \\ \textit{N} \uplus \{((\phi_1,\ldots,\psi,\ldots,\phi_n,\psi_1,\psi_2),\textit{J})\} \\ \text{provided } \psi \text{ is an open } \alpha\text{-formula, } \psi_1, \psi_2 \text{ its direct descendants} \\ \text{and the sequence is not closed.} \end{array}$

 $\begin{array}{ll} \beta\text{-Expansion} & N \uplus \{((\phi_1, \ldots, \psi, \ldots, \phi_n), J)\} \Rightarrow_{\mathsf{FT}} \\ N \uplus \{((\phi_1, \ldots, \psi, \ldots, \phi_n, \psi_1), J)\} \uplus \{((\phi_1, \ldots, \psi, \ldots, \phi_n, \psi_2), J)\} \\ \text{provided } \psi \text{ is an open } \beta\text{-formula, } \psi_1, \psi_2 \text{ its direct descendants} \\ \text{and the sequence is not closed.} \end{array}$

 $\begin{array}{l} \gamma\text{-Expansion} & N \uplus \{((\phi_1, \dots, \psi, \dots, \phi_n), J)\} \Rightarrow_{\mathsf{FT}} \\ N \uplus \{((\phi_1, \dots, \psi, \dots, \phi_n, \psi'), J)\} \end{array}$

provided ψ is a γ -formula, ψ' a $\gamma(t)$ descendant where *t* is a ground term in the signature of the sequence and *J*, the depth of *t* is bounded by the maximal term depth in $(\phi_1, \ldots, \psi, \ldots, \phi_n)$ and the sequence is not closed.

 $\delta
-Expansion \qquad N \uplus \{((\phi_1, \dots, \psi, \dots, \phi_n), J)\} \Rightarrow_{\mathsf{FT}} N \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n, \psi'), J \cup \{c\})\}$ provided ψ is an open δ -formula, ψ' a $\delta(c)$ descendant where c is

a fresh constant and the sequence is not closed.

The α -, and β -expansion rules are copies of the propositional rules adjusted to the extended state format. The α -, and β -expansion rules don't manipulate the set of ground terms of a state.

Note that for a particular γ -Expansion the number of potential ground terms that can be used for instantiation is always finite.

A possibly infinite tableau derivation $s_0 \Rightarrow_{\mathsf{FT}} s_1 \Rightarrow_{\mathsf{FT}} \ldots$ is called *saturated* if for all its open sequences M_i of some pair $(M_i, J_i) \in s_i$ and all formulas ϕ occurring in M_i , there is an index j > i and some pair $(M_j, J_j) \in s_j$, such that M_i is a prefix of M_j :

if in case ϕ is an α -formula then both direct descendants are part of M_j ,

if it is a β -formula then one of its descendants is part of M_j ,

if it is a δ -formula then one direct descendant is part of M_j , and

if it is γ -formula then all direct descendants from ground terms that can be built from function symbols in J_i and M_i such that their depth is bounded by the maximal term depth in M_i are part of the sequence M_j .

3.6.5 Theorem (Standard First-Order Tableau is Sound)

If for a closed formula ϕ the tableau calculus derives $\{((\neg \phi), J)\} \Rightarrow_{\mathsf{FT}}^* N$ and N is closed, then ϕ is valid.

3.6.6 Definition (Hintikka Set)

Let *M* be a possibly infinite set of closed first-order formulas such that for each variable x_S occurring in *M*, there is at least on ground term *t* of sort *S* occurring in *M*. *M* is a *Hintikka set* if for all formulas $\phi \in M$:

- 1. if ϕ is a literal, then $comp(\phi) \notin M$
- 2. if ϕ is an α formula then α_1 and α_2 are in *M*
- 3. if ϕ is a β formula then β_1 or β_2 is in *M*
- 4. if ϕ is a γ formula then for all ground terms *t* of correct sort occurring in *M* the formula $\gamma(t)$ is in *M*
- 5. if ϕ is a δ formula then $\delta(c)$ is in *M* for some constant *c*

3.6.7 Lemma (Hintikka's Lemma)

A Hintikka set is satisfiable.

3.6.8 Lemma (Open Branches of Saturated Tableaux constitute Hintikka Sets)

Let $s_0 \Rightarrow_{FT} s_1 \Rightarrow_{FT} \dots$ be a saturated tableau derivation containing the derivation of an open branch $(M_1, J_1) \Rightarrow (M_2, J_2) \Rightarrow \dots$ where M_i is always a strict subsequence of M_{i+1} . Then $M = \bigcup_i M_i$ is a Hintikka set.

3.6.9 Theorem (Standard First-Order Tableau is Complete)

If ϕ is valid then the tableau calculus computes $\{((\neg \phi), J)\} \Rightarrow_{\mathsf{FT}}^* N \text{ and } N \text{ is closed.}$

