

3.7.1 Definition (Unifier)

Two terms *s* and *t* of the same sort are said to be *unifiable* if there exists a well-sorted substitution σ so that $s\sigma = t\sigma$, the substitution σ is then called a well-sorted *unifier* of *s* and *t*.

The unifier σ is called *most general unifier*, written $\sigma = mgu(s, t)$, if any other well-sorted unifier τ of *s* and *t* it can be represented as $\tau = \sigma \tau'$, for some well-sorted substitution τ' .

A state of the naive standard unification calculus is a set of equations *E* or \perp , where \perp denotes that no unifier exists. The set *E* is also called a *unification problem*.

A variable $x \in vars(E)$ is called *solved* in E if $E = E' \uplus \{x = t\}$ and $x \notin vars(t)$ and $x \notin vars(E')$.

Standard (naive) Unification

Tautology
$$E \uplus \{t = t\} \Rightarrow_{SU} E$$

Decomposition $E \uplus \{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\} \Rightarrow_{SU} E \cup \{s_1 = t_1, \ldots, s_n = t_n\}$

Clash $E \uplus \{f(s_1, \ldots, s_n) = g(s_1, \ldots, s_m)\} \Rightarrow_{SU} \bot$ if $f \neq g$

Substitution $E \uplus \{x = t\} \Rightarrow_{SU} E\{x \mapsto t\} \cup \{x = t\}$ if $x \in vars(E)$ and $x \notin vars(t)$

Occurs Check $E \uplus \{x = t\} \Rightarrow_{SU} \bot$ if $x \neq t$ and $x \in vars(t)$

Orient $E \uplus \{t = x\} \Rightarrow_{SU} E \cup \{x = t\}$ if $t \notin \mathcal{X}$

3.7.2 Theorem (Soundness, Completeness and Termination of $\Rightarrow_{\rm SU})$

If s, t are two terms with sort(s) = sort(t) then

- 1. if $\{s = t\} \Rightarrow_{SU}^{*} E$ then any equation $(s' = t') \in E$ is well-sorted, i.e., sort(s') = sort(t').
- 2. \Rightarrow_{SU} terminates on $\{s = t\}$.
- 3. if $\{s = t\} \Rightarrow_{SU}^{*} E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}$.
- 4. if $\{s = t\} \Rightarrow_{SU}^* \bot$ then *s* and *t* are not unifiable.
- 5. if $\{s = t\} \Rightarrow_{SU}^* \{x_1 = t_1, \dots, x_n = t_n\}$ and this is a normal form, then $\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ is an mgu of *s*, *t*.

