Rewrite Systems on Logics: Calculi

	Validity	Satisfiability
Sound	If the calculus derives a proof of validity for the formula, it is valid.	If the calculus derives satisfiability of the for- mula, it has a model.
Complete	If the formula is valid, a proof of validity is deriv- able by the calculus.	If the formula has a model, the calculus de- rives satisfiability.
Strongly Complete	For any validity proof of the formula, there is a derivation in the calcu- lus producing this proof.	For any model of the formula, there is a derivation in the cal- culus producing this model.

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set $PROP(\Sigma)$ of *propositional formulas* over a signature Σ , is inductively defined by:

$PROP(\Sigma)$	Comment
\perp	connective \perp denotes "false"
Т	connective $ op$ denotes "true"
Р	for any propositional variable $m{P}\in\Sigma$
$(\neg \phi)$	connective – denotes "negation"
$(\phi \wedge \psi)$	connective \land denotes "conjunction"
$(\phi \lor \psi)$	connective \lor denotes "disjunction"
$(\phi ightarrow \psi)$	connective \rightarrow denotes "implication"
$(\phi \leftrightarrow \psi)$	connective \leftrightarrow denotes "equivalence"

where $\phi, \psi \in \mathsf{PROP}(\Sigma)$.

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Σ -valuation is a map

$$\mathcal{A}:\Sigma\to\{0,1\}.$$

where $\{0, 1\}$ is the set of *truth values*. A *partial* Σ *-valuation* is a map $\mathcal{A}' : \Sigma' \to \{0, 1\}$ where $\Sigma' \subseteq \Sigma$.

2.2.2 Definition (Semantics)

A Σ -valuation \mathcal{A} is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \mathsf{PROP}(\Sigma)$ by

$$\begin{array}{rcl} \mathcal{A}(\bot) & := & 0 \\ \mathcal{A}(\top) & := & 1 \\ \mathcal{A}(\neg \phi) & := & 1 - \mathcal{A}(\phi) \\ \mathcal{A}(\phi \land \psi) & := & \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \lor \psi) & := & \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \to \psi) & := & \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \leftrightarrow \psi) & := & \operatorname{if} \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then } 1 \text{ else } 0 \end{array}$$

If $\mathcal{A}(\phi) = 1$ for some Σ -valuation \mathcal{A} of a formula ϕ then ϕ is *satisfiable* and we write $\mathcal{A} \models \phi$. In this case \mathcal{A} is a *model* of ϕ .

If $\mathcal{A}(\phi) = 1$ for all Σ -valuations \mathcal{A} of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ -valuation \mathcal{A} for a formula ϕ where $\mathcal{A}(\phi) = 1$ we say ϕ is *unsatisfiable*.

A formula ϕ *entails* ψ , written $\phi \models \psi$, if for all Σ -valuations \mathcal{A} whenever $\mathcal{A} \models \phi$ then $\mathcal{A} \models \psi$.

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable *P* is called an *atom*. It is also called a *(positive) literal* and its negation $\neg P$ is called a *(negative) literal*.

The functions comp and atom map a literal to its complement, or atom, respectively: if $comp(\neg P) = P$ and $comp(P) = \neg P$, $atom(\neg P) = P$ and atom(P) = P for all $P \in \Sigma$. Literals are denoted by letters *L*, *K*. Two literals *P* and $\neg P$ are called *complementary*.

A disjunction of literals $L_1 \vee \ldots \vee L_n$ is called a *clause*. A clause is identified with the multiset of its literals.

2.1.3 Definition (Position)

A *position* is a word over \mathbb{N} . The set of positions of a formula ϕ is inductively defined by

$$\begin{array}{ll} \mathsf{pos}(\phi) & := & \{\epsilon\} \text{ if } \phi \in \{\top, \bot\} \text{ or } \phi \in \Sigma \\ \mathsf{pos}(\neg \phi) & := & \{\epsilon\} \cup \{1p \mid p \in \mathsf{pos}(\phi)\} \\ \mathsf{pos}(\phi \circ \psi) & := & \{\epsilon\} \cup \{1p \mid p \in \mathsf{pos}(\phi)\} \cup \{2p \mid p \in \mathsf{pos}(\psi)\} \\ \text{where } \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}. \end{array}$$

The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that pp' = q. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

The relation < is the strict part of \leq , i.e., p < q if $p \leq q$ but not $q \leq p$.

The relation \parallel denotes incomparable, also called parallel positions, i.e., $p \parallel q$ if neither $p \leq q$, nor $q \leq p$.

A position *p* is above *q* if $p \le q$, *p* is strictly above *q* if p < q, and *p* and *q* are parallel if $p \parallel q$.

The *size* of a formula ϕ is given by the cardinality of $pos(\phi)$: $|\phi| := |pos(\phi)|$.

The *subformula* of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by $\phi|_{\epsilon} := \phi, \neg \phi|_{1p} := \phi|_p$, and $(\phi_1 \circ \phi_2)|_{ip} := \phi_i|_p$ where $i \in \{1, 2\}$, $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

Finally, the *replacement* of a subformula at position $p \in \text{pos}(\phi)$ by a formula ψ is inductively defined by $\phi[\psi]_{\epsilon} := \psi$, $(\neg \phi)[\psi]_{1p} := \neg \phi[\psi]_p$, and $(\phi_1 \circ \phi_2)[\psi]_{1p} := (\phi_1[\psi]_p \circ \phi_2)$, $(\phi_1 \circ \phi_2)[\psi]_{2p} := (\phi_1 \circ \phi_2[\psi]_p)$, where $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

2.1.5 Definition (Polarity)

The *polarity* of the subformula $\phi|_p$ of ϕ at position $p \in pos(\phi)$ is inductively defined by

$$\begin{array}{rcl} \mathsf{pol}(\phi,\epsilon) & := & 1 \\ \mathsf{pol}(\neg\phi,1p) & := & -\mathsf{pol}(\phi,p) \\ \mathsf{pol}(\phi_1 \circ \phi_2,ip) & := & \mathsf{pol}(\phi_i,p) & \text{if } \circ \in \{\land,\lor\}, i \in \{1,2\} \\ \mathsf{pol}(\phi_1 \to \phi_2,1p) & := & -\mathsf{pol}(\phi_1,p) \\ \mathsf{pol}(\phi_1 \to \phi_2,2p) & := & \mathsf{pol}(\phi_2,p) \\ \mathsf{pol}(\phi_1 \leftrightarrow \phi_2,ip) & := & 0 & \text{if } i \in \{1,2\} \end{array}$$

Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If ${\mathcal A}$ is a (partial) valuation of domain Σ then it can be represented by the set

$$\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\} \cup \{\neg P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 0\}.$$

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If \mathcal{A} is a total valuation of domain Σ then it corresponds to the Herbrand interpretation $\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\}.$

2.2.4 Theorem (Deduction Theorem)

$\phi \models \psi \text{ iff } \models \phi \rightarrow \psi$

2.2.6 Lemma (Formula Replacement)

Let ϕ be a propositional formula containing a subformula ψ at position p, i.e., $\phi|_{p} = \psi$. Furthermore, assume $\models \psi \leftrightarrow \chi$. Then $\models \phi \leftrightarrow \phi[\chi]_{p}$.

