Rewrite Systems on Logics: Calculi

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set PROP(Σ) of *propositional formulas* over a signature Σ, is inductively defined by:

where $\phi, \psi \in \text{PROP}(\Sigma)$.

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Σ*-valuation* is a map

$$
\mathcal{A}:\Sigma\rightarrow\{0,1\}.
$$

where {0, 1} is the set of *truth values*. A *partial* Σ*-valuation* is a map $\mathcal{A}' : \Sigma' \to \{0, 1\}$ where $\Sigma' \subseteq \Sigma$.

2.2.2 Definition (Semantics)

A Σ-valuation A is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \mathsf{PROP}(\Sigma)$ by

$$
A(\bot) := 0
$$

\n
$$
A(\top) := 1
$$

\n
$$
A(\neg \phi) := 1 - A(\phi)
$$

\n
$$
A(\phi \land \psi) := \min(\{A(\phi), A(\psi)\})
$$

\n
$$
A(\phi \lor \psi) := \max(\{A(\phi), A(\psi)\})
$$

\n
$$
A(\phi \to \psi) := \max(\{1 - A(\phi), A(\psi)\})
$$

\n
$$
A(\phi \leftrightarrow \psi) := \text{if } A(\phi) = A(\psi) \text{ then } 1 \text{ else } 0
$$

If $A(\phi) = 1$ for some Σ -valuation A of a formula ϕ then ϕ is *satisfiable* and we write $A \models \phi$. In this case A is a *model* of ϕ .

If $A(\phi) = 1$ for all Σ -valuations A of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ -valuation A for a formula ϕ where $\mathcal{A}(\phi) = 1$ we say φ is *unsatisfiable*.

A formula ϕ *entails* ψ , written $\phi \models \psi$, if for all Σ -valuations A whenever $A \models \phi$ then $A \models \psi$.

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable *P* is called an *atom*. It is also called a *(positive) literal* and its negation ¬*P* is called a *(negative) literal*.

The functions comp and atom map a literal to its complement, or atom, respectively: if $comp(\neg P) = P$ and $comp(P) = \neg P$, atom($\neg P$) = *P* and atom(P) = *P* for all $P \in \Sigma$. Literals are denoted by letters *L*, *K*. Two literals *P* and ¬*P* are called *complementary*.

A disjunction of literals $L_1 \vee \ldots \vee L_n$ is called a *clause*. A clause is identified with the multiset of its literals.

2.1.3 Definition (Position)

A *position* is a word over N. The set of positions of a formula ϕ is inductively defined by

$$
\begin{array}{rcl}\n\text{pos}(\phi) & := & \{ \epsilon \} \text{ if } \phi \in \{ \top, \bot \} \text{ or } \phi \in \Sigma \\
\text{pos}(\neg \phi) & := & \{ \epsilon \} \cup \{ 1p \mid p \in \text{pos}(\phi) \} \\
\text{pos}(\phi \circ \psi) & := & \{ \epsilon \} \cup \{ 1p \mid p \in \text{pos}(\phi) \} \cup \{ 2p \mid p \in \text{pos}(\psi) \} \\
\text{where } \circ \in \{ \land, \lor, \to, \leftrightarrow \}.\n\end{array}
$$

The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that $pp' = q$. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

The relation \lt is the strict part of \lt , i.e., $p \lt q$ if $p \lt q$ but not *q* ≤ *p*.

The relation \parallel denotes incomparable, also called parallel positions, i.e., $p \parallel q$ if neither $p \leq q$, nor $q \leq p$.

A position *p* is *above q* if $p < q$, *p* is *strictly above q* if $p < q$, and *p* and *q* are *parallel* if $p \parallel q$.

The *size* of a formula ϕ is given by the cardinality of pos(ϕ): $|\phi| := |\text{pos}(\phi)|$.

The *subformula* of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by $\phi|_{\epsilon}:=\phi,$ $\neg\phi|_{1p}:=\phi|_{p},$ and $(\phi_{1}\circ\phi_{2})|_{ip}:=\phi_{i}|_{p}$ where $i\in\{1,2\},$ $\circ \in \{\wedge, \vee, \rightarrow, \leftrightarrow\}.$

Finally, the *replacement* of a subformula at position $p \in \text{pos}(\phi)$ by a formula ψ is inductively defined by $\phi[\psi]_{\epsilon} := \psi$, $(\neg \phi)[\psi]_{1p} := \neg \phi[\psi]_p$, and $(\phi_1 \circ \phi_2)[\psi]_{1p} := (\phi_1[\psi]_p \circ \phi_2)$, $(\phi_1 \circ \phi_2)[\psi]_{2\rho} := (\phi_1 \circ \phi_2[\psi]_{\rho}),$ where $\circ \in {\wedge, \vee, \rightarrow, \leftrightarrow}.$

2.1.5 Definition (Polarity)

The *polarity* of the subformula $\phi|_p$ of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by

$$
\begin{array}{rcll} \mathsf{pol}(\phi,\epsilon) & := & 1 \\ \mathsf{pol}(\neg\phi,1\rho) & := & -\mathsf{pol}(\phi,\rho) \\ \mathsf{pol}(\phi_1\circ\phi_2,\mathsf{i}\rho) & := & \mathsf{pol}(\phi_i,\rho) \quad \text{if} \quad \circ \in \{\land,\lor\}, \, i \in \{1,2\} \\ \mathsf{pol}(\phi_1\to\phi_2,1\rho) & := & -\mathsf{pol}(\phi_1,\rho) \\ \mathsf{pol}(\phi_1\to\phi_2,2\rho) & := & \mathsf{pol}(\phi_2,\rho) \\ \mathsf{pol}(\phi_1\leftrightarrow\phi_2,\mathsf{i}\rho) & := & 0 \quad \text{if} \ \ i \in \{1,2\} \end{array}
$$

Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If A is a (partial) valuation of domain Σ then it can be represented by the set

$$
\{P \mid P \in \Sigma \text{ and } A(P) = 1\} \cup \{\neg P \mid P \in \Sigma \text{ and } A(P) = 0\}.
$$

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If A is a total valuation of domain Σ then it corresponds to the Herbrand interpretation ${P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1}.$

2.2.4 Theorem (Deduction Theorem)

$\phi \models \psi$ iff $\models \phi \rightarrow \psi$

2.2.6 Lemma (Formula Replacement)

Let ϕ be a propositional formula containing a subformula ψ at position *p*, i.e., $\phi|_p = \psi$. Furthermore, assume $\models \psi \leftrightarrow \chi$. Then $\models \phi \leftrightarrow \phi[\chi]_p$.

