
First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the
same, as long as equational atoms are not considered. This
section deals only with ground clauses and recalls mostly the
material from Section 2.7 for first-order ground clauses. The main
difference is that the atom ordering is more complicated, see
Section 3.11.

From now on let N be a possibly infinite set of ground clauses.

January 26, 2017 21/1

3.12.1 Definition (Ground Clause Ordering)
Let ≺ be a strict rewrite ordering total on ground terms and
ground atoms. Then ≺ can be lifted to a total ordering ≺L on
literals by its multiset extension ≺mul where a positive literal
P(t1, . . . , tn) is mapped to the multiset {P(t1, . . . , tn)} and a
negative literal ¬P(t1, . . . , tn) to the multiset
{P(t1, . . . , tn),P(t1, . . . , tn)}.

The ordering ≺L is further lifted to a total ordering on clauses ≺C
by considering the multiset extension of ≺L for clauses.

January 26, 2017 22/1

3.12.2 Proposition (Properties of the Ground Clause
Ordering)
1. The orderings on literals and clauses are total and

well-founded.
2. Let C and D be clauses with P(t1, . . . , tn) = atom(max(C)),

Q(s1, . . . , sm) = atom(max(D)), where max(C) denotes the
maximal literal in C.
(a) If Q(s1, . . . , sm) ≺L P(t1, . . . , tn) then D ≺C C.
(b) If P(t1, . . . , tn) = Q(s1, . . . , sm), P(t1, . . . , tn) occurs negatively in

C but only positively in D, then D ≺C C.

January 26, 2017 23/1

Eventually, as I did for propositional logic, I overload ≺ with ≺L
and ≺C . So if ≺ is applied to literals it denotes ≺L, if it is applied
to clauses, it denotes ≺C .

Note that ≺ is a total ordering on literals and clauses as well. For
superposition, inferences are restricted to maximal literals with
respect to ≺.

For a clause set N, I define N≺C = {D ∈ N | D ≺ C}.

January 26, 2017 24/1

3.12.3 Definition (Abstract Redundancy)
A ground clause C is redundant with respect to a set of ground
clauses N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if
⊆ is strict. Duplicate clauses are anyway eliminated quietly
because the calculus operates on sets of clauses.

January 26, 2017 25/1

3.12.4 Definition (Selection Function)
The selection function sel maps clauses to one of its negative
literals or ⊥. If sel(C) = ¬P(t1, . . . , tn) then ¬P(t1, . . . , tn) is called
selected in C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further
means to restrict superposition inferences. If a negative literal is
selected in a clause, any superposition inference must be on the
selected literal.

January 26, 2017 26/1

3.12.5 Definition (Partial Model Construction)
Given a clause set N and an ordering ≺ we can construct a
(partial) model NI for N inductively as follows:

NC :=
⋃

D≺C δD

δD :=

{P(t1, . . . , tn)} if D = D′ ∨ P(t1, . . . , tn),

P(t1, . . . , tn) strictly maximal, no literal
selected in D and ND 6|= D

∅ otherwise
NI :=

⋃
C∈N δC

Clauses C with δC 6= ∅ are called productive.

January 26, 2017 27/1

3.12.6 Proposition (Propertied of the Model Operator)
Some properties of the partial model construction.
1. For every D with (C ∨ ¬P(t1, . . . , tn)) ≺ D we have

δD 6= {P(t1, . . . , tn)}.
2. If δC = {P(t1, . . . , tn)} then NC ∪ δC |= C.
3. If NC |= D and D ≺ C then for all C′ with C ≺ C′ we have

NC′ |= D and in particular NI |= D.
4. There is no clause C with P(t1, . . . , tn) ∨ P(t1, . . . , tn) ≺ C such

that δC = {P(t1, . . . , tn)}.

January 26, 2017 28/1

Please properly distinguish: N is a set of clauses interpreted as
the conjunction of all clauses.

N≺C is of set of clauses from N strictly smaller than C with
respect to ≺.

NI , NC are Herbrand interpretations (see Proposition 3.5.3).

NI is the overall (partial) model for N, whereas NC is generated
from all clauses from N strictly smaller than C.

January 26, 2017 29/1

Superposition Left
(N] {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(t1, . . . , tn)}) ⇒SUP
(N ∪ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(t1, . . . , tn)} ∪ {C1 ∨ C2})
where (i) P(t1, . . . , tn) is strictly maximal in C1 ∨ P(t1, . . . , tn)
(ii) no literal in C1 ∨ P(t1, . . . , tn) is selected
(iii) ¬P(t1, . . . , tn) is maximal and no literal selected in
C2 ∨ ¬P(t1, . . . , tn), or ¬P(t1, . . . , tn) is selected in
C2 ∨ ¬P(t1, . . . , tn)

Factoring (N] {C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)}) ⇒SUP
(N ∪ {C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)} ∪ {C ∨ P(t1, . . . , tn)})
where (i) P(t1, . . . , tn) is maximal in
C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)
(ii) no literal is selected in C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)

January 26, 2017 30/1

3.12.7 Definition (Saturation)
A set N of clauses is called saturated up to redundancy, if any
inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N.

January 26, 2017 31/1

Subsumption (N] {C1,C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Deletion (N] {C ∨P(t1, . . . , tn)∨¬P(t1, . . . , tn)})
⇒SUP (N)

Condensation (N]{C1∨L∨L}) ⇒SUP (N ∪{C1∨L})

Subsumption Resolu-
tion

(N] {C1 ∨ L,C2 ∨ ¬L}) ⇒SUP

(N ∪ {C1 ∨ L,C2})
where C1 ⊆ C2

January 26, 2017 32/1

