First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the same, as long as equational atoms are not considered. This section deals only with ground clauses and recalls mostly the material from Section 2.7 for first-order ground clauses. The main difference is that the atom ordering is more complicated, see Section 3.11.

From now on let *N* be a possibly infinite set of ground clauses.

3.12.1 Definition (Ground Clause Ordering)

Let \prec be a strict rewrite ordering total on ground terms and ground atoms. Then \prec can be lifted to a total ordering \prec_L on literals by its multiset extension \prec_{mul} where a positive literal $P(t_1, \ldots, t_n)$ is mapped to the multiset $\{P(t_1, \ldots, t_n)\}$ and a negative literal $\neg P(t_1, \ldots, t_n)$ to the multiset ${P(t_1, \ldots, t_n), P(t_1, \ldots, t_n)}.$

The ordering \prec_L is further lifted to a total ordering on clauses \prec_C by considering the multiset extension of \prec_L for clauses.

3.12.2 Proposition (Properties of the Ground Clause Ordering)

- 1. The orderings on literals and clauses are total and well-founded.
- 2. Let *C* and *D* be clauses with $P(t_1, \ldots, t_n) =$ atom(max(*C*)), $Q(s_1, \ldots, s_m) =$ atom(max(*D*)), where max(*C*) denotes the maximal literal in *C*.

\n- (a) If
$$
Q(s_1, \ldots, s_m) \prec_L P(t_1, \ldots, t_n)
$$
 then $D \prec_C C$.
\n- (b) If $P(t_1, \ldots, t_n) = Q(s_1, \ldots, s_m)$, $P(t_1, \ldots, t_n)$ occurs negatively in C but only positively in D , then $D \prec_C C$.
\n

Eventually, as I did for propositional logic, I overload \prec with \prec_L and \prec_C . So if \prec is applied to literals it denotes \prec_L , if it is applied to clauses, it denotes ≺*C*.

Note that \prec is a total ordering on literals and clauses as well. For superposition, inferences are restricted to maximal literals with respect to ≺.

For a clause set *N*, I define $N^{\prec C} = \{D \in N \mid D \prec C\}.$

3.12.3 Definition (Abstract Redundancy)

A ground clause *C* is *redundant* with respect to a set of ground clauses N if $N^{\prec C} \models C.$

Tautologies are redundant. Subsumed clauses are redundant if \subset is strict. Duplicate clauses are anyway eliminated quietly because the calculus operates on sets of clauses.

3.12.4 Definition (Selection Function)

The selection function sel maps clauses to one of its negative literals or ⊥. If sel(*C*) = $\neg P(t_1, \ldots, t_n)$ then $\neg P(t_1, \ldots, t_n)$ is called *selected* in *C*. If sel(*C*) = \perp then no literal in *C* is *selected*.

The selection function is, in addition to the ordering, a further means to restrict superposition inferences. If a negative literal is selected in a clause, any superposition inference must be on the selected literal.

3.12.5 Definition (Partial Model Construction)

Given a clause set N and an ordering \prec we can construct a (partial) model N_I for *N* inductively as follows:

$$
N_C := \bigcup_{D \prec C} \delta_D
$$
\n
$$
\delta_D := \begin{cases}\n\{P(t_1, \ldots, t_n)\} & \text{if } D = D' \lor P(t_1, \ldots, t_n), \\
P(t_1, \ldots, t_n) & \text{strictly maximal, no literal} \\
\text{selected in } D \text{ and } N_D \not\models D \\
\emptyset & \text{otherwise}\n\end{cases}
$$
\n
$$
N_L := \bigcup_{C \in N} \delta_C
$$

Clauses *C* with $\delta_C \neq \emptyset$ are called *productive*.

3.12.6 Proposition (Propertied of the Model Operator)

Some properties of the partial model construction.

- 1. For every *D* with $(C \vee \neg P(t_1, \ldots, t_n)) \prec D$ we have $\delta_D \neq \{P(t_1, \ldots, t_n)\}.$
- 2. If $\delta_C = \{P(t_1, \ldots, t_n)\}\$ then $N_C \cup \delta_C \models C$.
- 3. If $N_C \models D$ and $D \prec C$ then for all C' with $C \prec C'$ we have N_{C} = *D* and in particular N_{T} = *D*.
- 4. There is no clause *C* with $P(t_1, \ldots, t_n) \vee P(t_1, \ldots, t_n) \prec C$ such that $\delta_C = \{P(t_1, \ldots, t_n)\}.$

Please properly distinguish: *N* is a set of clauses interpreted as the conjunction of all clauses.

N [≺]*^C* is of set of clauses from *N* strictly smaller than *C* with respect to \prec .

 $N_{\mathcal{I}}$, $N_{\mathcal{C}}$ are Herbrand interpretations (see Proposition 3.5.3).

 N_{τ} is the overall (partial) model for *N*, whereas N_{C} is generated from all clauses from *N* strictly smaller than *C*.

Superposition Left

 $(N \oplus \{C_1 \vee P(t_1, \ldots, t_n), C_2 \vee \neg P(t_1, \ldots, t_n)\}) \Rightarrow$ SUP $(N \cup \{C_1 \vee P(t_1, \ldots, t_n), C_2 \vee \neg P(t_1, \ldots, t_n)\} \cup \{C_1 \vee C_2\})$ where (i) $P(t_1, \ldots, t_n)$ is strictly maximal in $C_1 \vee P(t_1, \ldots, t_n)$ (ii) no literal in $C_1 \vee P(t_1, \ldots, t_n)$ is selected (iii) $\neg P(t_1, \ldots, t_n)$ is maximal and no literal selected in $C_2 \vee \neg P(t_1, \ldots, t_n)$, or $\neg P(t_1, \ldots, t_n)$ is selected in C_2 ∨ $\neg P(t_1, \ldots, t_n)$

Factoring $(N \oplus \{C \vee P(t_1, \ldots, t_n) \vee P(t_1, \ldots, t_n)\}) \Rightarrow$ $(R ∪ {C ∨ P(t₁,..., t_n) ∨ P(t₁,..., t_n)} ∪ {C ∨ P(t₁,..., t_n)}$ where (i) $P(t_1, \ldots, t_n)$ is maximal in $C ∨ P(t_1, ..., t_n) ∨ P(t_1, ..., t_n)$ (ii) no literal is selected in $C \vee P(t_1, \ldots, t_n) \vee P(t_1, \ldots, t_n)$

3.12.7 Definition (Saturation)

A set *N* of clauses is called *saturated up to redundancy*, if any inference from non-redundant clauses in *N* yields a redundant clause with respect to *N* or is contained in *N*.

 $Subsumption$ provided $C_1 \subset C_2$

$$
(N \uplus \{C_1, C_2\}) \Rightarrow_{\text{SUP}} (N \cup \{C_1\})
$$

 $Tautology Deletion$ \Rightarrow SUP (N)

$$
(N \oplus \{C \vee P(t_1,\ldots,t_n) \vee \neg P(t_1,\ldots,t_n)\})
$$

Condensation
$$
(N \oplus \{C_1 \vee L \vee L\}) \Rightarrow_{\text{SUP}} (N \cup \{C_1 \vee L\})
$$

Subsumption Resolution $(N \oplus \{C_1 \vee L, C_2 \vee \neg L\}) \Rightarrow$ SUP $(N ∪ {C_1 ∨ L, C_2})$ where $C_1 \subset C_2$

