3.13.6 Lemma (Lifting)

Let $D \lor L$ and $C \lor L'$ be variable-disjoint clauses and σ a grounding substitution for $C \lor L$ and $D \lor L'$. If there is a superposition left inference $(N \uplus \{(D \lor L)\sigma, (C \lor L')\sigma\}) \Rightarrow_{SUP}$ $(N \cup \{(D \lor L)\sigma, (C \lor L')\sigma\} \cup \{D\sigma \lor C\sigma\})$ and if sel $((D \lor L)\sigma) = sel((D \lor L)\sigma, sel((C \lor L')\sigma) = sel((C \lor L'))\sigma$, then there exists a mgu τ such that $(N \uplus \{D \lor L, C \lor L'\}) \Rightarrow_{SUP} (N \cup \{D \lor L, C \lor L'\} \cup \{(D \lor C)\tau\}).$

Let $C \lor L \lor L'$ be a clause and σ a grounding substitution for $C \lor L \lor L'$. If there is a factoring inference $(N \uplus \{(C \lor L \lor L')\sigma\}) \Rightarrow_{SUP} (N \cup \{(C \lor L \lor L')\sigma\} \cup \{(C \lor L)\sigma\})$ and if sel($(C \lor L \lor L')\sigma$) = sel($(C \lor L \lor L')\sigma$, then there exists a mgu τ such that $(N \uplus \{C \lor L \lor L'\}) \Rightarrow_{SUP} (N \cup \{C \lor L \lor L'\} \cup \{(C \lor L)\tau\})$

3.13.7 Example (First-Order Reductions are not Liftable)

Consider the two clauses $P(x) \lor Q(x)$, P(g(y)) and grounding substitution $\{x \mapsto g(a), y \mapsto a\}$. Then $P(g(y))\sigma$ subsumes $(P(x) \lor Q(x))\sigma$ but P(g(y)) does not subsume $P(x) \lor Q(x)$. For all other reduction rules similar examples can be constructed.

3.13.8 Lemma (Soundness and Completeness)

First-Order Superposition is sound and complete.

3.13.9 Lemma (Redundant Clauses are Obsolete)

If a clause set *N* is unsatisfiable, then there is a derivation $N \Rightarrow_{SUP}^* N'$ such that $\bot \in N'$ and no clause in the derivation of \bot is redundant.

3.13.10 Lemma (Model Property)

If *N* is a saturated clause set and $\perp \notin N$ then ground(Σ, N)_{\mathcal{I}} $\models N$.

Equational Logic

From now on First-order Logic is considered with equality. In this chapter, I investigate properties of a set of unit equations. For a set of unit equations I write E.

Full first-order clauses with equality are studied in the chapter on first-order superposition with equality. I recall certain definitions from Section 1.6 and Chapter 3.

The main reasoning problem considered in this chapter is given a set of unit equations *E* and an additional equation $s \approx t$, does $E \models s \approx t$ hold?

As usual, all variables are implicitely universally quantified. The idea is to turn the equations *E* into a convergent term rewrite system (TRS) *R* such that the above problem can be solved by checking identity of the respective normal forms: $s \downarrow_R = t \downarrow_R$.

Showing $E \models s \approx t$ is as difficult as proving validity of any first-order formula, see the section on complexity.

4.0.1 Definition (Equivalence Relation, Congruence Relation)

An *equivalence* relation \sim on a term set $T(\Sigma, \mathcal{X})$ is a reflexive, transitive, symmetric binary relation on $T(\Sigma, \mathcal{X})$ such that if $s \sim t$ then sort(s) = sort(t).

Two terms *s* and *t* are called *equivalent*, if $s \sim t$.

An equivalence \sim is called a *congruence* if $s \sim t$ implies $u[s] \sim u[t]$, for all terms $s, t, u \in T(\Sigma, \mathcal{X})$. Given a term $t \in T(\Sigma, \mathcal{X})$, the set of all terms equivalent to t is called the *equivalence class of t by* \sim , denoted by

$$[t]_{\sim} := \{t' \in \mathcal{T}(\Sigma, \mathcal{X}) \mid t' \sim t\}.$$

If the matter of discussion does not depend on a particular equivalence relation or it is unambiguously known from the context, [*t*] is used instead of $[t]_{\sim}$. The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in $T(\Sigma, \mathcal{X})$ defined by the equivalence relation is called a *quotient by* \sim , denoted by $T(\Sigma, \mathcal{X})|_{\sim} := \{[t] \mid t \in T(\Sigma, \mathcal{X})\}$. Let *E* be a set of equations then \sim_E denotes the smallest congruence relation "containing" *E*, that is, $(I \approx r) \in E$ implies $I \sim_E r$. The equivalence class $[t]_{\sim_E}$ of a term *t* by the equivalence (congruence) \sim_E is usually denoted, for short, by $[t]_E$. Likewise, $T(\Sigma, \mathcal{X})|_E$ is used for the quotient $T(\Sigma, \mathcal{X})|_{\sim_E}$ of $T(\Sigma, \mathcal{X})$ by the equivalence (congruence) \sim_E .

4.1.1 Definition (Rewrite Rule, Term Rewrite System)

A *rewrite rule* is an equation $l \approx r$ between two terms l and r so that l is not a variable and $vars(l) \supseteq vars(r)$. A *term rewrite system R*, or a TRS for short, is a set of rewrite rules.

4.1.2 Definition (Rewrite Relation)

Let *E* be a set of (implicitly universally quantified) equations, i.e., unit clauses containing exactly one positive equation. The *rewrite* relation $\rightarrow_E \subseteq T(\Sigma, \mathcal{X}) \times T(\Sigma, \mathcal{X})$ is defined by

$$s \to_E t$$
 iff there exist $(l \approx r) \in E, p \in pos(s)$,
and matcher σ , so that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

Note that in particular for any equation $l \approx r \in E$ it holds $l \rightarrow_E r$, so the equation can also be written $l \rightarrow r \in E$.

Often $s = t \downarrow_R$ is written to denote that *s* is a normal form of *t* with respect to the rewrite relation \rightarrow_R . Notions $\rightarrow_R^0, \rightarrow_R^+, \rightarrow_R^*, \leftrightarrow_R^*$, etc. are defined accordingly, see Section 1.6.

An instance of the left-hand side of an equation is called a *redex* (reducible expression). *Contracting* a redex means replacing it with the corresponding instance of the right-hand side of the rule.

A term rewrite system *R* is called *convergent* if the rewrite relation \rightarrow_R is confluent and terminating. A set of equations *E* or a TRS *R* is terminating if the rewrite relation \rightarrow_E or \rightarrow_R has this property. Furthermore, if *E* is terminating then it is a TRS.

A rewrite system is called *right-reduced* if for all rewrite rules $I \rightarrow r$ in R, the term r is irreducible by R. A rewrite system R is called *left-reduced* if for all rewrite rules $I \rightarrow r$ in R, the term I is irreducible by $R \setminus \{I \rightarrow r\}$. A rewrite system is called *reduced* if it is left- and right-reduced.

4.1.3 Lemma (Left-Reduced TRS)

Left-reduced terminating rewrite systems are convergent. Convergent rewrite systems define unique normal forms.

4.1.4 Lemma (TRS Termination)

A rewrite system *R* terminates iff there exists a reduction ordering \succ so that $l \succ r$, for each rule $l \rightarrow r$ in *R*.

