
3.9. FIRST-ORDER CNF TRANSFORMATION 143

4. Resolution can be combined with more powerful redundancy elimination
methods; because of its global nature this is more difficult for the tableau
method.

5. Resolution can be refined to work well with equality; for tableau this seems
to be impossible.

6. On the other hand tableau calculi can be easily extended to other logics;
in particular tableau provers are very successful in modal and description
logics.

3.9 First-Order CNF Transformation

Similar to the propositional case, first-order resolution and superposition op-
erate on clauses. In this section I show how any first-order sentence can be
efficiently transformed into a CNF, preserving satisfiability. To this end all ex-
istentially quantified variables are replaced with so called Skolem functions.
Similar to the renaming of subformulas this replacement preserves satisfiability
only. Eventually, all variables in clauses are implicitly universally quantified.

More concretely, the acnf CNF transformation is algorithm from Sec-
tion 2.5.3 is generalized to first-order logic with equality. The adiitional com-
plications are: (i) additional rules for the quantifiers, (ii) the formula renaming
technique is extended to cope with variables and (iii) removal of existential quan-
tifiers through the introduction of Skolem functions. Basically, all rules known
from the propositional case apply.

The first two extra rules eliminate > and ⊥ from first-order formula starting
with a quantifier.

ElimTB13 χ[{∀,∃}x.>]p ⇒ACNF χ[>]p

ElimTB14 χ[{∀,∃}x.⊥]p ⇒ACNF χ[⊥]p

Next, in order to obtain a negation normal form with negation symbols in
front of atoms only, the respective rules for pushing negations over the quantifiers
are needed as well.

PushNeg4 χ[¬∀x.φ]p ⇒ACNF χ[∃x.¬φ]p

PushNeg5 χ[¬∃x.φ]p ⇒ACNF χ[∀x.¬φ]p

144 CHAPTER 3. FIRST-ORDER LOGIC

where the expression {∀,∃}x.φ covers both cases ∀x.φ and ∃x.φ. The next
step is to rename all variables such that different quantifiers bind different vari-
ables. This step is necessary to prevent a later on confusion of variables, once
the quantifiers are dropped.

RenVar φ ⇒ACNF φσ

for σ = {}

In first-order logic, the renaming of subformulas has to take care of variables
as well. The notion of an obvious position remains unchanged. Therefore, the
basic mechanism of renaming and the concept of a beneficial subformula is
exactly the same as in propositional logic. The only difference is that renaming
does introduce an atom in the free variables of the respective subformula. When
some formula ψ is renamed at position p an atom P (~xn), ~xn = x1, . . . , xn
replaces ψ|p where fvars(ψ|p) = {x1 . . . , xn}. The respective definition of P (~xn)
becomes

def(ψ, p, P (~xn)) :=

 ∀~xn.(P (~xn)→ ψ|p) if pol(ψ, p) = 1
∀~xn.(ψ|p → P (~xn)) if pol(ψ, p) = −1
∀~xn.(P (~xn)↔ ψ|p) if pol(ψ, p) = 0

and the rule SimpleRenaming is changed accordingly.

SimpleRenaming φ ⇒ACNF φ[P1(~x1, j1)]p1
[P2(~x2, j2)]p2

. . . [Pn(~xn, jn)]pn ∧
def(φ, p1, P1(~x1, j1))∧. . .∧ def(φ[P1(~x1, j1)]p1 [P2(~x2, j2)]p2 . . . [Pn−1(~xn−1, jn−1

)]pn−1 , pn, Pn(~xn, jn))

provided {p1, . . . , pn} ⊂ pos(φ) and for all i, i + j either pi ‖ pi+j or pi > pi+j
and where fvars(φ|pi) = {xi,1, . . . , xi, ji} and all Pi are different and new to φ

SimpleRenaming shares the variables of φ with the variables used for the def-
initions of the new predicates. This does not cause any confusion, because there
will never be a clause consisting of literals from the remaning φ after renaming
and literals from a definition. In propositional logic after subformula renaming,
removal of equivalences and implications, and pushing negations down in front
of atoms, the CNF can be generated using distributivity. In first-order logic the
existential quantifiers are eliminated first by the introduction of Skolem func-
tions. In order to receive Skolem functions with few arguments, the quantifiers
are first moved inwards as far as passible. This step is called mini-scoping.

MiniScope1 χ[∀x.(ψ1 ◦ ψ2)]p ⇒ACNF χ[(∀x.ψ1) ◦ ψ2]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

MiniScope2 χ[∃x.(ψ1 ◦ ψ2)]p ⇒ACNF χ[(∃x.ψ1) ◦ ψ2]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

MiniScope3 χ[∀x.(ψ1 ∧ ψ2)]p ⇒ACNF χ[(∀x.ψ1) ∧ (∀x.ψ2)σ]p

3.9. FIRST-ORDER CNF TRANSFORMATION 145

where σ = {}, x ∈ (fvars(ψ1) ∩ fvars(ψ2))

MiniScope4 χ[∃x.(ψ1 ∨ ψ2)]p ⇒ACNF χ[(∃x.ψ1) ∨ (∃x.ψ2)σ]p

where σ = {}, x ∈ (fvars(ψ1) ∩ fvars(ψ2))

The rules MiniScope1, MiniScope2 are applied modulo the commutativity
of ∧, ∨. Once the quantifiers are moved inwards Skolemization can take place.
Skolemization replaces all existentially quantified variables by shallow Skolem
function terms.

Skolemization χ[∃x.φ]p ⇒ACNF χ[φ{x 7→ f(y1, . . . , yn)}]p
provided there is no q, q < p with φ|q = ∃x′.ψ′, fvars(∃x.ψ) = {y1, . . . , yn},
f : sort(y1)× . . .× sort(yn)→ sort(x) is a new function symbol

Theorem 3.9.1 (Skolemization Preserves Satisfiability). A formula χ[∃x.φ]p is
satisfiable iff the formula χ[φ{x 7→ f(y1, . . . , yn)}]p is, where χ is in negation
normal form, p the maximal position of an existential quantifier, fvars(∃x.ψ) =
{y1, . . . , yn}, and arity(f) = n is a new function symbol to φ, f : sort(y1)× . . .×
sort(yn)→ sort(x).

Proof. Both directions of the proof are done by induction on the length of p and
then by a case analysis on the structure of the formula. I only show the relevant
cases.
⇒: If A, β |= ∃x.φ then there exists an a ∈ (sort(x))A such that A, β[x 7→

a] |= φ. Now define fA(β(y1), . . . , β(yn)) := a. Then obviously A, β |= χ[φ{x 7→
f(y1, . . . , yn)}]p. The function fA is well-defined, because the truth value of
∃x.φ under A, β depends only on the values β assigns to the free variables of
∃x.φ, i.e., the free variables fvars(∃x.ψ) = {y1, . . . , yn} the function f depends
on.
⇐: IfA, β |= χ[φ{x 7→ f(y1, . . . , yn)}]p thenA, β[x 7→ fA(β(y1), . . . , β(yn))] |=

φ and therefore A, β |= ∃x.φ.

Example 3.9.2 (Mini-Scoping and Skolemization). Consider the simple for-
mula ∀x.∃y.(R(x, x) ∧ P (y). Applying Skolemization directly to this formula,
without mini-scoping results in

∀x.∃y.(R(x, x) ∧ P (y))⇒Skolem
ACNF ∀x.(R(x, x) ∧ P (g(x))

for a unary Skolem function g because fvars(∃y.(R(x, x)∧P (y))) = {x}. Apply-
ing mini-scoping and then Skolemization generates

∀x.∃y.(R(x, x) ∧ P (y)) ⇒MiniScope,*
ACNF ∀x.R(x, x) ∧ ∃y.P (y)
⇒Skolem

ACNF ∀x.R(x, x) ∧ P (a)

for some Skolem constant a :→ sort(y) because fvars(∃y.P (y)) = ∅. Now the
former formula after Skolemization is seriously more complex than the latter.
The former belongs to an undecidable fragment of first-order logic while the
latter belongs to a decidable one (see Section 3.15).

146 CHAPTER 3. FIRST-ORDER LOGIC

Finally, the universal quantifiers are removed. In a first-order logic CNF any
variable is universally quantified by default. Furthermore, the variables of two
different clauses are always assumed to be different.

RemForall χ[∀x.ψ]p ⇒ACNF χ[ψ]p

The actual CNF is then done by distributivity, exactly as it is done in propo-
sitional logic.

Algorithm 11: acnf(φ)

Input : A first-order formula φ.
Output: A formula ψ in CNF satisfiability preserving to φ.

1 whilerule (ElimTB1(φ),. . .,ElimTB14(φ)) do ;
2 RenVar(φ);
3 SimpleRenaming(φ) on obvious positions;
4 whilerule (ElimEquiv1(φ),ElimEquiv2(φ)) do ;
5 whilerule (ElimImp(φ)) do ;
6 whilerule (PushNeg1(φ),. . .,PushNeg5(φ)) do ;
7 whilerule (MiniScope1(φ),. . .,MiniScope4(φ)) do ;
8 whilerule (Skolemization(φ)) do ;
9 whilerule (RemForall(φ)) do ;

10 whilerule (PushDisj(φ)) do ;
11 return φ;

Theorem 3.9.3 (Properties of the ACNF Transformation). Let φ be a first-
order sentence, then

1. acnf(φ) terminates

2. φ is satisfiable iff acnf(φ) is satisfiable

Proof. (Idea) 1. is a straightforward extension of the propositional case. It is
easy to define a measure for any line of Algorithm 11.
2. can also be established separately for all rule applications. The rules SimpleR-
enaming and Skolemization need separate proofs, the rest is straightforward or
copied from the propositional case.

C

In addition to the consideration of repeated subformulas, discussed
in Section 2.5, for first-order renaming another technique can pay off:
generalization. Consider the formula [φ1 ∨ (Q1(a1) ∧Q2(a1))] ∧ [φ2 ∨

(Q1(a2)∧Q2(a2))]∧ . . .∧ [φn ∨ (Q1(an)∧Q2(an)]. SimpleRenaming on obvious
renamings applied to this formula will independently rename any occurrences
of a formula (Q1(ai)∧Q2(ai)). However generalization pays off here. By adding

3.10. FIRST-ORDER RESOLUTION 147

the definition ∀x, y (R(x, y)→ (Q1(x)∧Q2(y))) and replacing the ith occurrence
of the conjunct by R(x, y){x 7→ ai, y 7→ ai} one definition for all subformula
occurrences suffices.

3.10 First-Order Resolution

As already mentioned, I still consider first-order logic without equality. First-
order resolution on ground clauses corresponds to propositional resolution. Each
ground atom becomes a propositional variable. However, since there are up to
infinitely many ground instances for a first-oder clause set with variables and
it is not a priori known which ground instances are needed in a proof, the
first-order resolution calculus operates on clauses with variables. Roughly, the
relationship between ground resolution and first-order resolution corresponds to
the relationship between standard tableau and free-variable tableau. However,
the variables in free-variable tablea can only be instantiated once, thereas in
resolution they can be instantiated arbitrarily often.

Propositional (or first-order ground) resolution is refutationally complete,
without reduction rules it is not guaranteed to terminate for satisfiable sets of
clauses, and inferior to the CDCL calculus. However, in contrast to the CDCL
calculus, resolution can be easily extended to non-ground clauses via unifica-
tion. The problem to lift the CDCL calculus lies in the lifting of the model
representation of the trail. I’ll discuss this in more detail in Section 3.15.

Lemma 3.10.1. Let A be a Σ− algebra and let φ be a Σ− formula with free
variables x1, . . . , xn. Then A |= ∀x1, . . . , xnφ iff A |= φ

Lemma 3.10.2. Let φ be a Σ−formula with free variables x1, . . . , xn, let σ be
a substitution and let y1, . . . , ym be free variables of φσ. Then A |= ∀x1, . . . , xnφ
implies A |= ∀y1, . . . , ymφσ.

In particular, if A is a model of an (implicitly universally quantified) clause
C then it is also a model of all (implicitly universally quantified) instances Cσ
of C. Consequently, if it is shown that some instances of clauses in a set N are
unsatisfiable then it is also shown that N itself is unsatisfiable.

General Resolution through Instantiation
The approach is to instantiate clauses appropriately. An example is shown

in Figure 3.3. However, this may lead to several problems. First of all, more
than one instance of a clause can participate in a proof and secondly, which is
even worse, there are infinitely many possible instances. Due to the fact that
instantiation must produce complementary literals so that inferences become
possible, the idea is to not instantiate more than necessary to get complemen-
tary literals. An instantiation of the clause set from Figure 3.3 is again shown
in Figure 3.4 with the difference that the latter instantiates only as much as
necessary, inevitably reducing the number of substitutions.

Lifting Principle

148 CHAPTER 3. FIRST-ORDER LOGIC

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b))

¬P (a, a) ¬P (a, b)

P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

{z′ 7→ a,
z 7→ f(a, b)}

{y 7→ a} {y 7→ b} {x′ 7→ a,
x 7→ b}

Figure 3.3: Instantiation of the clause set N =
P (z′, z′) ∨ ¬Q(z),¬P (a, y), P (x′, b) ∨Q(f(x′, x))

In order to overcome the problem of effectively and efficiently saturating in-
finite sets of clauses as they arise from taking the (ground) instances of finitely
many general clauses (with variables), the general idea is to lift the resolution
principle as proposed by Robinson [41]. The lifting is as follows: For the reso-
lution of general clauses, equality of ground atoms is generalized to unifiability
of general atoms and only the most general (minimal) unifiers (mgu) are com-
puted.

The advantage of the method in Robinson [41] compared with Gilmore [21]
is that unification enumerates only those instances of clauses that participate
in an inference. Moreover, clauses are not right away instantiated into ground
clauses. Rather they are instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent infinite sets of ground
inferences which are computed simultaneously in a single step.

The first-order resolution calculus consists of the inference rules Resolution
and Factoring and generalizes the propositional resolution calculus (Section 2.6).
Variables in clauses are implicitely universally quantified, so they can be instan-
tiated in an arbitrary way. For the application of any inference or reduction rule,
I can therefore assume that the involved clauses don’t share any variables, i.e.,
variables are a priori renamed. Furthermore, clauses are assumed to be unique
with respect to renaming in a set.

Resolution (N]{D∨A,¬B∨C}) ⇒RES (N∪{D∨A,¬B∨C}∪{(D∨C)σ})
if σ = mgu(A,B) for atoms A,B

Factoring (N]{C ∨L∨K}) ⇒RES (N ∪{C ∨L∨K}∪{(C ∨L)σ})
if σ = mgu(L,K) for literals L,K

The reduction rules are

3.10. FIRST-ORDER RESOLUTION 149

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z)

¬P (a, a) ¬P (a, b)

P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

{z′ 7→ a}
{y 7→ a} {y 7→ b}

{x′ 7→ a}

{z 7→ f(a, x)}

Figure 3.4: Instantiation of the clause set N =
P (z′, z′) ∨ ¬Q(z),¬P (a, y), P (x′, b) ∨ Q(f(x′, x)) with a reduced number
of instantiations.

Subsumption (N] {C1, C2}) ⇒RES (N ∪ {C1})
provided C1σ ⊂ C2 for some matcher σ

Tautology Dele-
tion

(N] {C ∨A ∨ ¬A}) ⇒RES (N)

Condensation (N] {C}) ⇒RES (N ∪ {C ′})
where C ′ is the result of removing duplicate literals from Cσ for some matcher
σ and C ′ subsumes C

Subsumption
Resolution

(N] {C1 ∨ L,C2 ∨K}) ⇒RES (N ∪ {C1 ∨ L,C2})

where Lσ = comp(K) and C1σ ⊆ C2

Lifting Lemma

Lemma 3.10.3. Let C and D be variable-disjoint clauses. If

Propositional Resolution (N] {Dσ,Cρ}) ⇒ (N ∪ {Dσ,Cρ} ∪ {C ′})
where σ and ρ are substitutions then there exists a substitution τ so that

General Resolution (N] {D,C}) ⇒ (N ∪ {D,C} ∪ {C ′′τ = C ′})
An analogous lifting lemma holds for factorization.

150 CHAPTER 3. FIRST-ORDER LOGIC

Saturation of Sets of General Clauses

Definition 3.10.4 (Resolution Saturation). A set of clauses N is saturated up
to redundancy

Corollary 3.10.5. Let N be a set of general clauses saturated under Res, i.e.,
Res(N) ⊆ N . Then also GΣ(N) is saturated, that is, Res(GΣ(N)) ⊆ GΣ(N).

Proof. W.l.o.g. assume that clauses in N are pairwise variable-disjoint. (Other-
wise they have to be made disjoint and this renaming process changes neither
Res(N) nor GΣ(N).) Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable
ground instances Dσ and Cρ of N with resolvent C ′, or else (ii) C ′ is a factor
of a ground instance Cσ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent
C ′′ with C ′′τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by assumption,
C ′ ∈ GΣ(N) is obtained.

Case (ii): Similar.

Herbrand’s Theorem

Lemma 3.10.6. Let N be a set of Σ-clauses, let A be an interpretation. Then
A |= N implies A |= GΣ(N).

Lemma 3.10.7. LetN be a set of Σ-clauses, letA be a Herbrand interpretation.
Then A |= GΣ(N) implies A |= N .

Theorem 3.10.8 (Herbrand). A set N of Σ-clauses is satisfiable if and only if
it has a Herbrand model over Σ.

Proof. (⇐) Assume N has a Herbrand model I over Σ, i.e., I |= N . Then N is
satisfiable.

(⇒) Let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)
⇒ ⊥ 6∈ GΣ(Res∗(N))
⇒ IGΣ(Res∗(N)) |= GΣ(Res∗(N)) (Theorem ; Corollary 3.10.5)
⇒ IGΣ(Res∗(N)) |= Res∗(N) (Lemma 3.10.7)
⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N))

The Theorem of Löwenheim-Skolem

Theorem 3.10.9 (Löwenheim–Skolem). Let Σ be a countable signature and
let S be a set of closed Σ-formulas. Then S is satisfiable iff S has a model over
a countable universe.

3.11. ORDERINGS 151

Proof. If both X and Σ are countable, then S can be at most countably infinite.
Now generate, maintaining satisfiability, a set N of clauses from S. This extends
Σ by at most countably many new Skolem functions to Σ′. As Σ′ is countable,
so is TΣ′ , the universe of Herbrand-interpretations over Σ′. Now apply Theo-
rem 3.10.8.

Refutational Completeness of General Resolution

Theorem 3.10.10 (Soundness and Completenss of Resolution). The resolution
calculus is sound and complete:

N is unsatisfiable iff N ⇒∗RES N
′ and ⊥ ∈ N ′ for some N ′

Theorem 3.10.11 (Soundness and Completenss of Resolution). Let N be a
set of first-clauses where Res(N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof. Let Res(N) ⊆ N . By Corollary 3.10.5: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 3.10.6/3.10.7; Theorem 3.10.8)
⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)
⇔ ⊥ ∈ N

Compactness of First-Order Logic

Theorem 3.10.12 (Compactness Theorem for First-Order Logic). Let S be
a set of first-order formulas. S is unsatisfiable if and only if some finite subset
S′ ⊆ S is unsatisfiable.

Proof. (⇐) Assume that S′ is unsatisfiable. Then there exists at least one un-
satisfiable formula φ ∈ S′. Since S′ ⊆ S, S is also unsatisfiable.

(⇒) Let S be unsatisfiable and let N be the set of clauses obtained by Skolemiza-
tion and CNF transformation of the formulas in S. Clearly Res∗(N) is unsatis-
fiable. By Theorem 3.10.11, ⊥ ∈ Res∗(N), and therefore ⊥ ∈ Resn(N) for some
n ∈ N. Consequently, ⊥ has a finite resolution proof B of depth≤ n. Choose
S′ as the subset of formulas in S so that the corresponding clauses contain the
assumptions (leaves) of B.

3.11 Orderings

Propositional superposition is based on an ordering on the propositional vari-
ables, Section 2.7. The ordering is total and well-founded. Basically, proposi-
tional variables correspond to ground atoms in first-order logic. This section
generalizes the ideas of the propositional superposition ordering to first-order
logic. In first-order logic the ordering has to also consider terms and variables
and operations on terms like the application of a substitution.

152 CHAPTER 3. FIRST-ORDER LOGIC

Definition 3.11.1 (Σ-Operation Compatible Relation). A binary relation
A over T (Σ,X) is called compatible with Σ-operations, if s A s′ implies
f(t1, . . . , s, . . . , tn) A f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ T (Σ,X).

Lemma 3.11.2 (Σ-Operation Compatible Relation). A relationA is compatible
with Σ-operations iff s A s′ implies t[s]p A t[s′]p for all s, s′, t ∈ T (Σ,X) and
p ∈ pos(t).

In the literature compatible with Σ-operations is sometimes also called com-
patible with contexts.

Definition 3.11.3 (Substitution Stable Relation, Rewrite Relation). A binary
relation A over T (Σ,X) is called stable under substitutions, if s A s′ implies
sσ A s′σ for all s, s′ ∈ T (Σ,X) and substitutions σ. A binary relation A is
called a rewrite relation, if it is compatible with Σ-operations and stable under
substitutions.

A rewrite ordering is then an ordering that is a rewrite relation.

Definition 3.11.4 (Subterm Ordering). The proper subterm ordering s > t is
defined by s > t iff s|p = t for some position p 6= ε of s.

Definition 3.11.5 (Simplification Ordering). A rewrite ordering � over
T (Σ,X) is called simplification ordering, if it enjoys the subterm property s � t
implies s > t for all s, t ∈ T (Σ,X) of the same sort.

Definition 3.11.6 (Lexicographical Path Ordering (LPO)). Let Σ = (S,Ω,Π)
be a signature and let � be a strict partial ordering on operator symbols in Ω,
called precedence. The lexicographical path ordering �lpo on T (Σ,X) is defined
as follows: if s, t are terms in TS(Σ,X) then s �lpo t iff

1. t = x ∈ X , x ∈ vars(s) and s 6= t or

2. s = f(s1, . . . , sn), t = g(t1, . . . , tm) and

(a) si �lpo t for some i ∈ {1, . . . , n} or

(b) f � g and s �lpo tj for every j ∈ {1, . . . ,m} or

(c) f = g, s �lpo tj for every j ∈ {1, . . . ,m} and (s1, . . . , sn)(�lpo
)lex(t1, . . . , tm).

Theorem 3.11.7 (LPO Properties). 1. The LPO is a rewrite ordering.

2. LPO enjoys the subterm property, hence is a simplification ordering.

3. If the precedence � is total on Ω then �lpo is total on the set of ground
terms T (Σ).

4. If Ω is finite then �lpo is well-founded.

3.11. ORDERINGS 153

Example 3.11.8. Consider the terms g(x), g(y), g(g(a)), g(b), g(a), b, a. With
respect to the precedence g � b � a the ordering on the ground terms is
g(g(a)) �lpo g(b) �lpo g(a) �lpo b �lpo a. The terms g(x) and g(y) are not
comparable. Note that the terms g(g(a)), g(b), g(a) are all instances of both
g(x) and g(y).

With respect to the precedence b � a � g the ordering on the ground terms
is g(b) �lpo b �lpo g(g(a)) �lpo g(a) �lpo a.

Definition 3.11.9 (The Knuth-Bendix Ordering). Let Σ = (S,Ω,Π) be a finite
signature, let � be a strict partial ordering (“precedence”) on Ω, let w : Ω∪X →
R+ be a weight function, so that the following admissibility condition is satisfied:
w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all constants c ∈ Ω.

Then, the weight function w can be extended to terms recursively:

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively∑
w(t) =

∑
x∈vars(t)

w(x) ·#(x, t) +
∑
f∈Ω

w(f) ·#(f, t)

where #(a, t) is the number of occurrences of a in t.
The Knuth-Bendix ordering �kbo on T (Σ,X) induced by � and admissible

w is defined by: s �kbo t iff

1. #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

2. #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f � g, or

(b) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm)(�kbo
)lex(t1, . . . , tm).

Theorem 3.11.10 (KBO Properties). 1. The KBO is a rewrite ordering.

2. KBO enjoys the subterm property, hence is a simplification ordering.

3. If the precedence � is total on Ω then �kbo is total on the set of ground
terms T (Σ).

4. If Ω is finite then �kbo is well-founded.

The KBO ordering can be extended to contain unary function symbols with
weight zero. This was motivated by completion of the group axioms, see Chap-
ter 4.

Definition 3.11.11 (The Knuth-Bendix Ordering Extended). The additional
requirements added to Definition 3.11.9 are

154 CHAPTER 3. FIRST-ORDER LOGIC

1. Extend w to w : Ω ∪ X → R+
0

2. If w(f) = 0 for some f ∈ Ω with arity(f) = 1, then f � g for all g ∈ Ω.

3. As a first case to the disjunction of 3.11.9-2.
(a’) t = x, s = fn(x) for some n ≥ 1

The LPO ordering as well as the KBO ordering can be extended to atoms in
a straightforward way. The precedence � is extended to Π. For LPO atoms are
then compared according to Definition 3.11.6-2. For KBO the weight function
w is also extended to atoms by giving predicates a non-zero positive weight and
then atoms are compared according to terms.

Actually, since atoms are never substituted for variables in first-order logic,
an alternative to the above would be to first compare the predicate symbols and
let � decide the ordering. Only if the atoms share the same predicate symbol,
the argument terms are considered, e.g., in a lexicographic way and are then
compared with respect to KBO or LPO, respectively.

3.12 First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the same, as long as
equational atoms are not considered. This section deals only with ground clauses
and recalls mostly the material from Section 2.7 for first-order ground clauses.
The main difference is that the atom ordering is more complicated, see Sec-
tion 3.11. Let N be a possibly infinite set of ground clauses.

Definition 3.12.1 (Ground Clause Ordering). Let ≺ be a strict rewrite order-
ing total on ground terms and ground atoms. Then ≺ can be lifted to a total
ordering ≺L on literals by its multiset extension ≺mul where a positive literal
P (t1, . . . , tn) is mapped to the multiset {P (t1, . . . , tn)} and a negative literal
¬P (t1, . . . , tn) to the multiset {P (t1, . . . , tn), P (t1, . . . , tn)}. The ordering ≺L
is further lifted to a total ordering on clauses ≺C by considering the multiset
extension of ≺L for clauses.

Proposition 3.12.2 (Properties of the Ground Clause Ordering). 1. The or-
derings on literals and clauses are total and well-founded.

2. Let C and D be clauses with P (t1, . . . , tn) = atom(max(C)),
Q(s1, . . . , sm) = atom(max(D)), where max(C) denotes the maximal lit-
eral in C.

(a) If Q(s1, . . . , sm) ≺L P (t1, . . . , tn) then D ≺C C.

(b) If P (t1, . . . , tn) = Q(s1, . . . , sm), P (t1, . . . , tn) occurs negatively in C
but only positively in D, then D ≺C C.

3.12. FIRST-ORDER GROUND SUPERPOSITION 155

Eventually, as I did for propositional logic, I overload ≺ with ≺L and ≺C . So
if ≺ is applied to literals it denotes ≺L, if it is applied to clauses, it denotes ≺C .
Note that ≺ is a total ordering on literals and clauses as well. For superposition,
inferences are restricted to maximal literals with respect to ≺. For a clause set
N , I define N≺C = {D ∈ N | D ≺ C}.

Definition 3.12.3 (Abstract Redundancy). A ground clause C is redundant
with respect to a set of ground clauses N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if ⊆ is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

C

Note that for finite N , and any C ∈ N redundancy N≺C |= C can
be decided but is as hard as testing unsatisfiability for a clause set
N . So the goal is to invent redundancy notions that can be efficiently
decided and that are useful.

Definition 3.12.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or ⊥. If sel(C) = ¬P (t1, . . . , tn) then ¬P (t1, . . . , tn)
is called selected in C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected in a clause, any
superposition inference must be on the selected literal.

Definition 3.12.5 (Partial Model Construction). Given a clause set N and an
ordering ≺ we can construct a (partial) model NI for N inductively as follows:

NC :=
⋃
D≺C δD

δD :=

{P (t1, . . . , tn)} if D = D′ ∨ P (t1, . . . , tn), P (t1, . . . , tn) strictly maximal, no literal

selected in D and ND 6|= D

∅ otherwise

NI :=
⋃
C∈N δC

Clauses C with δC 6= ∅ are called productive.

Proposition 3.12.6 (Propertied of the Model Operator). Some properties of
the partial model construction.

1. For every D with (C ∨¬P (t1, . . . , tn)) ≺ D we have δD 6= {P (t1, . . . , tn)}.

2. If δC = {P (t1, . . . , tn)} then NC ∪ δC |= C.

3. If NC |= D and D ≺ C then for all C ′ with C ≺ C ′ we have NC′ |= D
and in particular NI |= D.

4. There is no clause C with P (t1, . . . , tn) ∨ P (t1, . . . , tn) ≺ C such that
δC = {P (t1, . . . , tn)}.

156 CHAPTER 3. FIRST-ORDER LOGIC

T Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N≺C is of set of clauses from N strictly

smaller than C with respect to ≺. NI , NC are Herbrand interpretations (see
Proposition 3.5.3). NI is the overall (partial) model for N , whereas NC is gen-
erated from all clauses from N strictly smaller than C.

Superposition Left (N]{C1∨P (t1, . . . , tn), C2∨¬P (t1, . . . , tn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (t1, . . . , tn)} ∪ {C1 ∨ C2})
where (i) P (t1, . . . , tn) is strictly maximal in C1 ∨ P (t1, . . . , tn) (ii) no literal in
C1∨P (t1, . . . , tn) is selected (iii) ¬P (t1, . . . , tn) is maximal and no literal selected
in C2 ∨ ¬P (t1, . . . , tn), or ¬P (t1, . . . , tn) is selected in C2 ∨ ¬P (t1, . . . , tn)

Factoring (N] {C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)} ∪ {C ∨ P (t1, . . . , tn)})
where (i) P (t1, . . . , tn) is maximal in C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn) (ii) no
literal is selected in C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

Definition 3.12.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N .

Examples for specific redundancy rules that can be efficiently decided are

Subsumption (N] {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Dele-
tion

(N] {C ∨ P (t1, . . . , tn) ∨ ¬P (t1, . . . , tn)}) ⇒SUP (N)

Condensation (N] {C1 ∨ L ∨ L}) ⇒SUP (N ∪ {C1 ∨ L})

Subsumption
Resolution

(N] {C1 ∨ L,C2 ∨ ¬L}) ⇒SUP (N ∪ {C1 ∨ L,C2})

where C1 ⊆ C2

Proposition 3.12.8 (Completeness of the Reduction Rules). All clauses re-
moved by Subsumption, Tautology Deletion, Condensation and Subsumption
Resolution are redundant with respect to the kept or added clauses.

Theorem 3.12.9 (Completeness). Let N be a, possibly countably infinite, set
of ground clauses. If N is saturated up to redundancy and ⊥ /∈ N then N is
satisfiable and NI |= N .

3.12. FIRST-ORDER GROUND SUPERPOSITION 157

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N≺D |= D,
(ii) ⊥ /∈ N and (iii) NI 6|= N . Then there is a minimal, with respect to ≺, clause
C∨L ∈ N such that NI 6|= C∨L and L is a selected literal in C∨L or no literal
in C ∨ L is selected and L is maximal. This clause must exist because ⊥ /∈ N .

The clause C ∨ L is not redundant. For otherwise, N≺C∨L |= C ∨ L and
hence NI |= C ∨ L, because NI |= N≺C∨L, a contradiction.

I distinguish the case L is a positive and no literal selected in C ∨ L or L
is a negative literal. Firstly, assume L is positive, i.e., L = P (t1, . . . , tn) for
some ground atom P (t1, . . . , tn). Now if P (t1, . . . , tn) is strictly maximal in
C ∨P (t1, . . . , tn) then actually δC∨P = {P (t1, . . . , tn)} and hence NI |= C ∨P ,
a contradiction. So P (t1, . . . , tn) is not strictly maximal. But then actually C ∨
P (t1, . . . , tn) has the form C ′1∨P (t1, . . . , tn)∨P (t1, . . . , tn) and Factoring derives
C ′1∨P (t1, . . . , tn) where (C ′1∨P (t1, . . . , tn)) ≺ (C ′1∨P (t1, . . . , tn)∨P (t1, . . . , tn)).
Now C ′1 ∨ P (t1, . . . , tn) is not redundant, strictly smaller than C ∨ L, we have
C ′1∨P (t1, . . . , tn) ∈ N and NI 6|= C ′1∨P (t1, . . . , tn), a contradiction against the
choice that C ∨ L is minimal.

Secondly, let us assume L is negative, i.e., L = ¬P (t1, . . . , tn) for some
ground atom P (t1, . . . , tn). Then, since NI 6|= C ∨ ¬P (t1, . . . , tn) we know
P (t1, . . . , tn) ∈ NI . So there is a clause D ∨ P (t1, . . . , tn) ∈ N where
δD∨P (t1,...,tn) = {P (t1, . . . , tn)} and P (t1, . . . , tn) is strictly maximal in D ∨
P (t1, . . . , tn) and (D ∨ P (t1, . . . , tn)) ≺ (C ∨ ¬P (t1, . . . , tn)). So Superposition
Left derives C ∨ D where (C ∨ D) ≺ (C ∨ ¬P (t1, . . . , tn)). The derived clause
C ∨ D cannot be redundant, because for otherwise either N≺D∨P (t1,...,tn) |=
D ∨ P (t1, . . . , tn) or N≺C∨¬P (t1,...,tn) |= C ∨ ¬P (t1, . . . , tn). So C ∨D ∈ N and
NI 6|= C ∨D, a contradiction against the choice that C ∨L is the minimal false
clause.

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

Theorem 3.12.10 (Compactness of First-Order Logic). Let N be a, possibly
countably infinite, set of first-order logic ground clauses. Then N is unsatisfiable
iff there is a finite subset N ′ ⊆ N such that N ′ is unsatisfiable.

Proof. If N is unsatisfiable, saturation via superposition generates ⊥. So there
is an i such that N ⇒i

SUP N ′ and ⊥ ∈ N ′. The clause ⊥ is the result of at
most i-many superposition inferences, reductions on clauses {C1, . . . , Cn} ⊆ N .
Superposition is sound, so {C1, . . . , Cn} is a finite, unsatisfiable subset of N .

Corollary 3.12.11 (Compactness of First-Order Logic: Classical). A set N of
clauses is satisfiable iff all finite subsets of N are satisfiable.

Theorem 3.12.12 (Soundness and Completeness of Ground Superposition). A
first-order Σ-sentence φ is valid iff there exists a ground superposition refutation
for ground(Σ, cnf(¬φ)).

158 CHAPTER 3. FIRST-ORDER LOGIC

Proof. A first-order sentence φ is valid iff ¬φ is unsatisfiable iff acnf(¬φ) is
unsatisfiable iff ground(Σ, cnf(¬φ)) is unsatisfiable iff superposition provides a
refutation of ground(Σ, cnf(¬φ)).

Theorem 3.12.13 (Semi-Decidability of First-Order Logic by Ground Super-
position). If a first-order Σ-sentence φ is valid then a ground superposition
refutation can be computed.

Proof. In a fair way enumerate ground(Σ, acnf(¬φ)) and perform superposition
inference steps. The enumeration can, e.g., be done by considering Herbrand
terms of increasing size.

Example 3.12.14 (Ground Superposition). Consider the below clauses 1-4
and superposition refutation with respect a KBO with precedence P � Q �
g � f � c � b � a where the weight function w returns 1 for all signature
symbols. Maximal literals are marked with a ∗.

1. ¬P (f(c))∗ ∨ ¬P (f(c))∗ ∨Q(b) (Input)
2. P (f(c))∗ ∨Q(b) (Input)
3. ¬P (g(b, c))∗ ∨ ¬Q(b) (Input)
4. P (g(b, c))∗ (Input)
5. ¬P (f(c))∗ ∨Q(b) (Cond(1))
6. Q(b)∗ ∨Q(b)∗ (Sup(5, 2)))
7. Q(b)∗ (Fact(6))
8. ¬Q(b)∗ (Sup(3, 4))

10. ⊥ (Sup(8, 7))

Note that clause 5 cannot be derived by Factoring whereas clause 7 can also be
derived by Condensation. Clause 8 is also the result of a Subsumption Resolution
application to clauses 3, 4.

Theorem 3.12.15 (Craig Theorem [15]). Let φ and ψ be two propositional
(first-order ground) formulas so that φ |= ψ. Then there exists a formula χ
(called the interpolant for φ |= ψ), so that χ contains only propositional variables
(first-order signature symbols) occurring both in φ and in ψ so that φ |= χ and
χ |= ψ.

Proof. Translate φ and ¬ψ into CNF. let N and M , respectively, denote the
resulting clause set. Choose an atom ordering � for which the propositional
variables that occur in φ but not in ψ are maximal. Saturate N into N∗ w.r.t.
Sup�sel with an empty selection function sel. Then saturate N∗∪M w.r.t. Sup�sel
to derive ⊥. As N∗ is already saturated, due to the ordering restrictions only
inferences need to be considered where premises, if they are from N∗, only
contain symbols that also occur in ψ. The conjunction of these premises is an
interpolant χ. The theorem also holds for first-order formulas. For universal for-
mulas the above proof can be easily extended. In the general case, a proof based
on superposition technology is more complicated because of Skolemization.

3.13. FIRST-ORDER SUPERPOSITION 159

3.13 First-Order Superposition

Now the result for ground superposition are lifted to superposition on first-order
clauses with variables, still without equality. The completeness proof of ground
superposition above talks about (strictly) maximal literals of ground clauses.
The non-ground calculus considers those literals that correspond to (strictly)
maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.12.1 where clauses
with variables are projected to their ground instances for ordering computations.

Definition 3.13.1 (Maximal Literal). A literal L is called maximal in a clause
C if and only if there exists a grounding substitution σ so that Lσ is maximal
in Cσ, i.e., there is no different L′ ∈ C: Lσ ≺ L′σ. The literal L is called strictly
maximal if there is no different L′ ∈ C such that Lσ � L′σ.

Note that the orderings KBO and LPO cannot be total on atoms with vari-
ables, because they are stable under substitutions. Therefore, maximality can
also be defined on the basis of absence of greater literals. A literal L is called
maximal in a clause C if L 6≺ L′ for all other literals L′ ∈ C. It is called strictly
maximal in a clause C if L 6� L′ for all other literals L′ ∈ C.

Superposition Left (N]{C1∨P (t1, . . . , tn), C2∨¬P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P (t1, . . . , tn)σ is strictly maximal in (C1 ∨ P (t1, . . . , tn))σ (ii) no
literal in C1 ∨ P (t1, . . . , tn) is selected (iii) ¬P (s1, . . . , sn)σ is maximal and
no literal selected in (C2 ∨ ¬P (s1, . . . , sn))σ, or ¬P (s1, . . . , sn) is selected in
(C2 ∨ ¬P (s1, . . . , sn))σ (iv) σ is the mgu of P (t1, . . . , tn) and P (s1, . . . , sn)

Factoring (N] {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)} ∪ {(C ∨ P (t1, . . . , tn))σ})
where (i) P (t1, . . . , tn)σ is maximal in (C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn))σ
(ii) no literal is selected in C ∨P (t1, . . . , tn)∨P (s1, . . . , sn) (iii) σ is the mgu of
P (t1, . . . , tn) and P (s1, . . . , sn)

Note that the above inference rules Superposition Left and Factoring are
generalizations of their respective counterparts from the ground superposition
calculus above. Therefore, on ground clauses they coincide. Therefore, we can
safely overload them in the sequel.

Definition 3.13.2 (Abstract Redundancy). A clause C is redundant with
respect to a clause set N if for all ground instances Cσ there are clauses
{C1, . . . , Cn} ⊆ N with ground instances C1τ1, . . . , Cnτn such that Ciτi ≺ Cσ
for all i and C1τ1, . . . , Cnτn |= Cσ.

Definition 3.13.3 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N .

160 CHAPTER 3. FIRST-ORDER LOGIC

In contrast to the ground case, the above abstract notion of redundancy is
not effective, i.e., it is undecidable for some clause C whether it is redundant, in
general. Nevertheless, the concrete ground redundancy notions carry over to the
non-ground case. Note also that a clause C is contained in N modulo renaming
of variables.

Let rdup be a function from clauses to clauses that removes duplicate literals,
i.e., rdup(C) = C ′ where C ′ ⊆ C, C ′ does not contain any duplicate literals,
and for each L ∈ C also L ∈ C ′.

Subsumption (N] {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1σ ⊂ C2 for some σ

Tautology Dele-
tion

(N] {C ∨ P (t1, . . . , tn) ∨ ¬P (t1, . . . , tn)}) ⇒SUP (N)

Condensation (N]{C1 ∨L∨L′}) ⇒SUP (N ∪{rdup((C1 ∨L∨L′)σ)})
provided Lσ = L′ and rdup((C1 ∨ L ∨ L′)σ) subsumes C1 ∨ L ∨ L′ for some σ

Subsumption
Resolution

(N] {C1 ∨ L,C2 ∨ L′}) ⇒SUP (N ∪ {C1 ∨ L,C2})

where Lσ = ¬L′ and C1σ ⊆ C2 for some σ

Lemma 3.13.4. All reduction rules are instances of the abstract redundancy
criterion.

Proof. Do it

Lemma 3.13.5 (Subsumption is NP-complete). Subsumption is NP-complete.

Proof. Let C1 subsume C2 with substitution σ Subsumption is in NP because
the size of σ is bounded by the size of C2 and the subset relation can be checked
in time at most quadratic in the size of C1 and C2.

Propositional SAT can be reduced as follows. Assume a 3-SAT clause set
N . Consider a 3-place predicate R and a unary function g and a mapping from
propositional variables P to first order variables xP .

Lemma 3.13.6 (Lifting). Let D∨L and C∨L′ be variable-disjoint clauses and
σ a grounding substitution for C ∨L and D ∨L′. If there is a superposition left
inference

(N] {(D ∨ L)σ, (C ∨ L′)σ})⇒SUP (N ∪ {(D ∨ L)σ, (C ∨ L′)σ} ∪ {Dσ ∨ Cσ})

and if sel((D ∨ L)σ) = sel((D ∨ L))σ, sel((C ∨ L′)σ) = sel((C ∨ L′))σ , then
there exists a mgu τ such that

(N] {D ∨ L,C ∨ L′})⇒SUP (N ∪ {D ∨ L,C ∨ L′} ∪ {(D ∨ C)τ}).

3.13. FIRST-ORDER SUPERPOSITION 161

Let C ∨L∨L′ be a clause and σ a grounding substitution for C ∨L∨L′. If
there is a factoring inference

(N] {(C ∨ L ∨ L′)σ})⇒SUP (N ∪ {(C ∨ L ∨ L′)σ} ∪ {(C ∨ L)σ})

and if sel((C ∨ L ∨ L′)σ) = sel((C ∨ L ∨ L′))σ , then there exists a mgu τ such
that

(N] {C ∨ L ∨ L′})⇒SUP (N ∪ {C ∨ L ∨ L′} ∪ {(C ∨ L)τ})

Note that in the above lemma the clause Dσ∨Cσ is an instance of the clause
(D∨C)τ . The reduction rules cannot be lifted in the same way as the following
example shows.

Example 3.13.7 (First-Order Reductions are not Liftable). Consider the two
clauses P (x) ∨ Q(x), P (g(y)) and grounding substitution {x 7→ g(a), y 7→ a}.
Then P (g(y))σ subsumes (P (x)∨Q(x))σ but P (g(y)) does not subsume P (x)∨
Q(x). For all other reduction rules similar examples can be constructed.

Lemma 3.13.8 (Soundness and Completeness). First-Order Superposition is
sound and complete.

Proof. Soundness is obvious. For completeness, Theorem 3.12.12 proves the
ground case. Now by applying Lemma 3.13.6 to this proof it can be lifted to the
first-order level, as argued in the following.

Let N be a an unsatisfiable set of first-order clauses. By Theorem 3.5.5 and
Lemma 3.6.10 there exist a finite unsatisfiable set N ′ of ground instances from
clauses from N such that for each clause Cσ ∈ N ′ there is a clause C ∈ N . Now
ground superposition is complete, Theorem 3.12.12, so there exists a derivation
of the empty clause by ground superposition from N ′: N ′ = N ′0 ⇒SUP . . .⇒SUP

N ′k and ⊥ ∈ N ′k. Now by an inductive argument on the length of the derivation
k this derivation can be lifted to the first-order level. The invariant is: for any
ground clause Cσ ∈ N ′i used in the ground proof, there is a clause C ∈ Ni on
the first-order level. The induction base holds for N and N ′ by construction.
For the induction step Lemma 3.13.6 delivers the result.

There are questions left open by Lemma 3.13.8. It just says that a ground
refutation can be lifted to a first-order refutation. But what about abstract
redundancy, Definition 3.13.2? Can first-order redundant clauses be deleted
without harming completeness? And what about the ground model operator
with respect to clause sets N saturated on the first-order level. Is in this case
ground(Σ, N)I a model? The next two lemmas answer these questions positively.

Lemma 3.13.9 (Redundant Clauses are Obsolete). If a clause set N is unsat-
isfiable, then there is a derivation N ⇒∗SUP N

′ such that ⊥ ∈ N ′ and no clause
in the derivation of ⊥ is redundant.

Proof. If N is unsatisfiable then there is a ground superposition refutation of
ground(Σ, N) such that no ground clause in the refutation is redundant. Now
according to Lemma 3.13.8 this proof can be lifted to the first-order level. Now

162 CHAPTER 3. FIRST-ORDER LOGIC

assume some clause C in the first-order proof is redundant that is the lifting of
some clause Cσ from the ground proof with respect to a grounding substitution
σ. The clause C is redundant by Definition 3.13.2 if all its ground instances are,
in particular, Cσ. But this contradicts the fact that the lifted ground proof does
not contain redundant clauses.

Lemma 3.13.10 (Model Property). If N is a saturated clause set and ⊥ 6∈ N
then ground(Σ, N)I |= N .

Proof. As usual we assume that selection on the ground and respective non-
ground clauses is identical. Assume ground(Σ, N)I 6|= N . Then there is a min-
imal ground clause Cσ, C 6= ⊥, C ∈ N such that ground(Σ, N)I 6|= Cσ.
Note that Cσ is not redundant as for otherwise ground(Σ, N)I |= Cσ. So
ground(Σ, N) is not saturated. If Cσ is productive, i.e., Cσ = (C ′ ∨ L)σ such
that L is positive, Lσ strictly maximal in (C ′ ∨ L)σ then Lσ ∈ ground(Σ, N)I
and hence ground(Σ, N)I |= Cσ contradicting ground(Σ, N)I 6|= Cσ.

If Cσ = (C ′∨L∨L′)σ such that L is positive, Lσ maximal in (C ′∨L∨L′)σ
then, because N is saturated, there is a clause (C ′ ∨ L)τ ∈ N such that (C ′ ∨
L)τσ = (C ′∨L)σ. Now (C ′∨L)τ is not redundant, ground(Σ, N)I 6|= (C ′∨L)τ ,
contradicting the minimal choice of Cσ.

If Cσ = (C ′∨L)σ such that L is selected, or negative and maximal then there
is a clause (D′∨L′) ∈ N and grounding substitution ρ, such that L′ρ is a strictly
maximal positive literal in (D′ ∨ L′)ρ, L′ρ ∈ ground(Σ, N)I and L′ρ = ¬Lσ.
Again, since N is saturated, there is variable disjoint clause (C ′ ∨ D′)τ ∈ N
for some unifier τ , (C ′ ∨ D′)τσρ ≺ Cσ, and ground(Σ, N)I 6|= (C ′ ∨ D′)τσρ
contradicting the minimal choice of Cσ.

Dynamic stuff: a clause C is called persistent in a derivation N →∗SUP N
′ if

there is some i such that C ∈ Ni for N →i
SUP Ni and for all j > i, N →j

SUP Nj
then C ∈ Nj . A derivation N →∗SUP N ′ is called fair if any two persistent
clauses C, D and any superposition inference C ′ out of the two clauses, there is
an index j such with N →j

SUP Nj →∗SUP N
′ such that C ′ ∈ Nj .

Definition 3.13.11 (Persistent Clause). Let N0 ⇒SUP N1 ⇒SUP . . . be a,
possibly infinite, superposition derivation. A clause C is called persistent in this
derivation if C ∈ Ni for some i and for all j > i also C ∈ Nj .

Definition 3.13.12 (Fair Derivation). A derivation N0 ⇒SUP N1 ⇒SUP . . . is
called fair if for any persistent clause C ∈ Ni where factoring is applicable to
C, there is a j such that the factor of C ′ ∈ Nj or ⊥ ∈ Nj . If {C,D} ⊆ Ni are
persistent clauses such that superposition left is applicable to C, D then the
superposition left result is also in Nj for some j or ⊥ ∈ Nj .

Theorem 3.13.13 (Dynamic Superposition Completeness). If N is unsatisfi-
able and N = N0 ⇒SUP N1 ⇒SUP . . . is a fair derivation, then there is ⊥ ∈ Nj
for some j.

