Let *E* be a set of universally quantified equations. A model A of *E* is also called an *E-algebra*. If $E \models \forall \vec{x} (s \approx t)$, i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras, this is also denoted with $s \approx_F t$. The goal is to use the rewrite relation \rightarrow_F to express the semantic consequence relation syntactically: $\bm{s} \approx_E^{} t$ if and only if $\bm{s} \leftrightarrow_E^*^{} t.$

Let *E* be a set of (well-sorted) equations over $T(\Sigma, \mathcal{X})$ where all variables are implicitly universally quantified. The following inference system allows to derive consequences of *E*:

Reflexivity $E \Rightarrow_F E \cup \{t \approx t\}$

Symmetry $E \oplus \{t \approx t'\} \Rightarrow_E E \cup \{t \approx t'\} \cup \{t' \approx t\}$

Transitivity $E \uplus \{ t \approx t', t' \approx t'' \} \Rightarrow_E$ $E \cup \{t \approx t', t' \approx t''\} \cup \{t \approx t''\}$

Congruence $E \oplus \{t_1 \approx t'_1, \ldots, t_n \approx t'_n\} \Rightarrow$ $E \cup \{t_1 \approx t'_1, \ldots, t_n \approx t'_n\} \cup \{f(t_1, \ldots, t_n) \approx f(t'_1, \ldots, t'_n)\}$ for any function $f : sort(t_1) \times ... \times sort(t_n) \rightarrow S$ for some *S*

Instance $E \uplus \{ t \approx t' \} \Rightarrow_E E \cup \{ t \approx t' \} \cup \{ t \sigma \approx t' \sigma \}$ for any well-sorted substitution σ

4.1.5 Lemma (Equivalence of \leftrightarrow_E^* and \Rightarrow_E^*)

The following properties are equivalent:

1. $s \leftrightarrow_{E}^{*} t$

2. $E \Rightarrow_{E}^{*} s \approx t$ is derivable.

where $E \Rightarrow^*_{E} s \approx t$ is an abbreviation for $E \Rightarrow^*_{E} E'$ and $s \approx t \in E'.$

4.1.6 Corollary (Convergence of *E*)

If a set of equations *E* is convergent then $s \approx_E t$ if and only if $s \leftrightarrow^* t$ if and only if $s \downarrow_F = t \downarrow_F$.

4.1.7 Corollary (Decidability of ≈*E*)

If a set of equations *E* is finite and convergent then \approx_F is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined relations ↔[∗] *E* and *Rightarrow*[∗] *E* . What is missing, in analogy to Herbrand's theorem for first-order logic without equality Theorem 3.5.5, is a semantic characterization of the relations by a particular algebra.

4.1.8 Definition (Quotient Algebra)

For sets of unit equations this is a *quotient algebra*: Let *X* be a set of variables. For $t \in T(\Sigma, \mathcal{X})$ let $[t] = \{t' \in \mathcal{T}(\Sigma, \mathcal{X})) \mid E \Rightarrow^*_{E} t \approx t'\}$ be the *congruence class* of *t*. Define a Σ-algebra I*E*, called the *quotient algebra*, technically $\mathcal{T}(\Sigma, \mathcal{X})/E$, as follows: $S^{\mathcal{I}_E} = \{ [t] \mid t \in \mathcal{T}_S(\Sigma, \mathcal{X}) \}$ for all sorts *S* and $f^{\mathcal{I}_{E}}([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)]$ for *f* : sort $(t_1) \times \ldots \times$ sort $(t_n) \to T \in \Omega$ for some sort *T*.

4.1.9 Lemma (\mathcal{I}_F) is an *E*-algebra)

 $I_F = T(\Sigma, \mathcal{X})/E$ is an *E*-algebra.

4.1.10 Lemma (⇒*^E* is complete)

Let X be a countably infinite set of variables; let $s, t \in T_S(\Sigma, \mathcal{X})$. If $\mathcal{I}_E \models \forall \vec{x} (s \approx t)$, then $E \Rightarrow^*_{E} s \approx t$ is derivable.

4.1.11 Theorem (Birkhoff's Theorem)

Let X be a countably infinite set of variables, let *E* be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_S(\Sigma, \mathcal{X})$:

\n- 1.
$$
s \leftrightarrow_E^* t
$$
.
\n- 2. $E \Rightarrow_E^* s \approx t$ is derivable.
\n- 3. $s \approx_E t$, i.e., $E \models \forall \vec{x}(s \approx t)$.
\n- 4. $\mathcal{I}_E \models \forall \vec{x}(s \approx t)$.
\n

By Theorem 4.1.11 the semantics of *E* and \leftrightarrow _{*E*} conincide. In order to decide \leftrightarrow_E^* we need to turn \rightarrow_E^* in a confluent and terminating relation.

If \leftrightarrow_E^* is terminating then confluence is equivalent to local confluence, see Newman's Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if $t_1 \nless \t_0 \rightarrow_E t_2$, does there exist a term *s* so that $t_1 \rightarrow_{E}^* \mathsf{s} \not\stackrel{*}{\varepsilon} \leftarrow t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes) then a repitition of the respective other step yields the common term *s*.

If the two rewrite steps happen below each other (overlap at or below a variable position) again a repetition of the respective other step yields the common term *s*.

If the left-hand sides of the two rules overlap at a non-variable position there is no ovious way to generate *s*.

More technically two rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ overlap if there exist some non-variable subterm $l_1|_p$ such that l_2 and $l_1|_p$ have a common instance $(l_1|_p) \sigma_1 = l_2 \sigma_2$. If the two rewrite rules do not have common variables, then only a single substitution is necessary, the mgu σ of $(l_1|_p)$ and l_2 .

4.2.1 Definition (Critical Pair)

Let $l_i \rightarrow r_i$ $(i = 1, 2)$ be two rewrite rules in a TRS R whithout common variables, i.e., vars $(l_1) \cap \text{vars}(l_2) = \emptyset$. Let $p \in \text{pos}(l_1)$ be a position so that $l_1|_p$ is not a variable and σ is an mgu of $l_1|_p$ and *l*₂. Then $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma) [r_2 \sigma]_p$.

 $\langle r_1\sigma,(l_1\sigma)[r_2\sigma]_{\rho}\rangle$ is called a *critical pair* of *R*.

The critical pair is *joinable* (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma) [r_2 \sigma]_p$.

4.2.2 Theorem ("Critical Pair Theorem")

A TRS *R* is locally confluent iff all its critical pairs are joinable.

Knuth-Bendix Completion (KBC)

Given a set *E* of equations, the goal of Knuth-Bendix completion is to transform *E* into an equivalent convergent set *R* of rewrite rules. If *R* is finite this yields a decision procedure for *E*.

For ensuring termination the calculus fixes a reduction ordering \succ and constructs *R* in such a way that \rightarrow _{*R*} \subseteq \succ , i.e., *l* \succ *r* for every $l \rightarrow r \in R$.

For ensuring confluence the calculus checks whether all critical pairs are joinable.

The completion procedure itself is presented as a set of abstract rewrite rules working on a pair of equations *E* and rules *R*: $(E_0;R_0) \Rightarrow_{KBC} (E_1;R_1) \Rightarrow_{KBC} (E_1;R_2) \Rightarrow_{KBC}$...

The initial state is (E_0, \emptyset) where $E = E_0$ contains the input equations.

If \Rightarrow _{KBC} successfully terminates then *E* is empty and *R* is the convergent rewrite system for E_0 .

For each step $(E; R) \Rightarrow_{KBC} (E'; R')$ the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$. By cp (R) I denote the set of critical pairs between rules in *R*.

Orient $(E \uplus \{s \in$ $\approx t$ }; R) $\Rightarrow_{\sf KBC} (E; R \cup \{s \rightarrow t\})$ if $s \succ t$ **Delete** $(E \oplus \{s \approx s\}; R) \Rightarrow_{KBC} (E; R)$ **Deduce** $(E; R) \Rightarrow_{KBC} (E \cup \{s \approx t\}; R)$ if $\langle s, t \rangle \in \text{cp}(R)$

Simplify-Eq (*E*] {*s* . $\approx t$ }; R) $\Rightarrow_{\mathsf{KBC}}$ $(E \cup \{u \approx t\}; R)$ if $s \rightarrow R$ *u*

R-Simplify-Rule $(E; R \oplus \{s \rightarrow t\}) \Rightarrow_{KBC} (E; R \cup \{s \rightarrow u\})$ if $t \rightarrow B$ *u*

L-Simplify-Rule $(E; R \oplus \{s \rightarrow t\}) \Rightarrow_{KBC} (E \cup \{u \approx t\}; R)$ if $s \rightarrow R$ *u* using a rule $l \rightarrow r \in R$ so that $s \sqsupset l$, see below.

Trivial equations cannot be oriented and since they are not needed they can be deleted by the Delete rule.

The rule Deduce turns critical pairs between rules in *R* into additional equations. Note that if $\langle s, t \rangle \in \text{cp}(R)$ then $s_R \leftarrow u \rightarrow_R t$ and hence $R \models s \approx t$.

The simplification rules are not needed but serve as reduction rules, removing redundancy from the state. Simplification of the left-hand side may influence orientability and orientation of the result. Therefore, it yields an equation. For technical reasons, the left-hand side of $s \rightarrow t$ may only be simplified using a rule $l \rightarrow r$, if $l \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \rightarrow l$, where the *encompassment quasi-ordering* \supseteq is defined by $s \supseteq z$ *l* if $s|_p = l\sigma$ for some *p* and σ and $\Box = \overline{\Box} \setminus \overline{\Box}$ is the strict part of $\overline{\Box}$.

