Let *E* be a set of universally quantified equations. A model \mathcal{A} of *E* is also called an *E*-algebra. If $E \models \forall \vec{x} (s \approx t)$, i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras, this is also denoted with $s \approx_E t$. The goal is to use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically: $s \approx_E t$ if and only if $s \leftrightarrow_F^* t$.

Let *E* be a set of (well-sorted) equations over $T(\Sigma, \mathcal{X})$ where all variables are implicitly universally quantified. The following inference system allows to derive consequences of *E*:

Reflexivity $E \Rightarrow_{\mathsf{E}} E \cup \{t \approx t\}$

Symmetry
$$E \uplus \{t \approx t'\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t'\} \cup \{t' \approx t\}$$

Transitivity $E \uplus \{t \approx t', t' \approx t''\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t', t' \approx t''\} \cup \{t \approx t''\}$

Congruence $E \uplus \{t_1 \approx t'_1, \dots, t_n \approx t'_n\} \Rightarrow_{\mathsf{E}} E \cup \{t_1 \approx t'_1, \dots, t_n \approx t'_n\} \cup \{f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)\}$ for any function $f : \operatorname{sort}(t_1) \times \dots \times \operatorname{sort}(t_n) \to S$ for some S

Instance $E \uplus \{t \approx t'\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t'\} \cup \{t\sigma \approx t'\sigma\}$ for any well-sorted substitution σ

4.1.5 Lemma (Equivalence of \leftrightarrow_E^* and \Rightarrow_E^*)

The following properties are equivalent:

1.
$$s \leftrightarrow_E^* t$$

2. $E \Rightarrow_E^* s \approx t$ is derivable.

where $E \Rightarrow_E^* s \approx t$ is an abbreviation for $E \Rightarrow_E^* E'$ and $s \approx t \in E'$.

4.1.6 Corollary (Convergence of *E*)

If a set of equations *E* is convergent then $s \approx_E t$ if and only if $s \leftrightarrow^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

4.1.7 Corollary (Decidability of \approx_E)

If a set of equations *E* is finite and convergent then \approx_E is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined relations \leftrightarrow_E^* and *Rightarrow*_E^{*}. What is missing, in analogy to Herbrand's theorem for first-order logic without equality Theorem 3.5.5, is a semantic characterization of the relations by a particular algebra.

4.1.8 Definition (Quotient Algebra)

For sets of unit equations this is a *quotient algebra*: Let *X* be a set of variables. For $t \in T(\Sigma, \mathcal{X})$ let $[t] = \{t' \in T(\Sigma, \mathcal{X})) \mid E \Rightarrow_{\mathsf{E}}^* t \approx t'\}$ be the *congruence class* of *t*. Define a Σ -algebra \mathcal{I}_E , called the *quotient algebra*, technically $T(\Sigma, \mathcal{X})/E$, as follows: $S^{\mathcal{I}_E} = \{[t] \mid t \in T_S(\Sigma, \mathcal{X})\}$ for all sorts *S* and $f^{\mathcal{I}_E}([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)]$ for $f : \operatorname{sort}(t_1) \times \dots \times \operatorname{sort}(t_n) \to T \in \Omega$ for some sort *T*.

4.1.9 Lemma (\mathcal{I}_E is an *E*-algebra)

 $\mathcal{I}_E = T(\Sigma, \mathcal{X})/E$ is an *E*-algebra.

4.1.10 Lemma (\Rightarrow_E is complete)

Let \mathcal{X} be a countably infinite set of variables; let $s, t \in T_{\mathcal{S}}(\Sigma, \mathcal{X})$. If $\mathcal{I}_{\mathcal{E}} \models \forall \vec{x} (s \approx t)$, then $\mathcal{E} \Rightarrow_{\mathcal{E}}^* s \approx t$ is derivable.

4.1.11 Theorem (Birkhoff's Theorem)

Let \mathcal{X} be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\mathcal{S}}(\Sigma, \mathcal{X})$:

1.
$$s \leftrightarrow_E^* t$$
.
2. $E \Rightarrow_E^* s \approx t$ is derivable.
3. $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$.
4. $\mathcal{I}_E \models \forall \vec{x} (s \approx t)$.

By Theorem 4.1.11 the semantics of *E* and \leftrightarrow_E^* conincide. In order to decide \leftrightarrow_E^* we need to turn \rightarrow_E^* in a confluent and terminating relation.

If \leftrightarrow_E^* is terminating then confluence is equivalent to local confluence, see Newman's Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if $t_1 \xrightarrow{} t_0 \rightarrow_E t_2$, does there exist a term *s* so that $t_1 \rightarrow_E^* s \xrightarrow{} t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes) then a repitition of the respective other step yields the common term s.

If the two rewrite steps happen below each other (overlap at or below a variable position) again a repetition of the respective other step yields the common term s.

If the left-hand sides of the two rules overlap at a non-variable position there is no ovious way to generate *s*.

More technically two rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ overlap if there exist some non-variable subterm $l_1|_p$ such that l_2 and $l_1|_p$ have a common instance $(l_1|_p)\sigma_1 = l_2\sigma_2$. If the two rewrite rules do not have common variables, then only a single substitution is necessary, the mgu σ of $(l_1|_p)$ and l_2 .

4.2.1 Definition (Critical Pair)

Let $l_i \rightarrow r_i$ (i = 1, 2) be two rewrite rules in a TRS *R* whithout common variables, i.e., $vars(l_1) \cap vars(l_2) = \emptyset$. Let $p \in pos(l_1)$ be a position so that $l_1|_p$ is not a variable and σ is an mgu of $l_1|_p$ and l_2 . Then $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]_p$.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a *critical pair* of *R*.

The critical pair is *joinable* (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma) [r_2 \sigma]_p$.

4.2.2 Theorem ("Critical Pair Theorem")

A TRS *R* is locally confluent iff all its critical pairs are joinable.

Knuth-Bendix Completion (KBC)

Given a set E of equations, the goal of Knuth-Bendix completion is to transform E into an equivalent convergent set R of rewrite rules. If R is finite this yields a decision procedure for E.

For ensuring termination the calculus fixes a reduction ordering \succ and constructs R in such a way that $\rightarrow_R \subseteq \succ$, i.e., $l \succ r$ for every $l \rightarrow r \in R$.

For ensuring confluence the calculus checks whether all critical pairs are joinable.

The completion procedure itself is presented as a set of abstract rewrite rules working on a pair of equations *E* and rules *R*: $(E_0;R_0) \Rightarrow_{\text{KBC}} (E_1;R_1) \Rightarrow_{\text{KBC}} (E_1;R_2) \Rightarrow_{\text{KBC}} \dots$

The initial state is (E_0, \emptyset) where $E = E_0$ contains the input equations.

If \Rightarrow_{KBC} successfully terminates then *E* is empty and *R* is the convergent rewrite system for *E*₀.

For each step $(E; R) \Rightarrow_{\mathsf{KBC}} (E'; R')$ the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$. By $\mathsf{cp}(R)$ I denote the set of critical pairs between rules in R.

Orient $(E \uplus \{s \approx t\}; R) \Rightarrow_{\mathsf{KBC}} (E; R \cup \{s \rightarrow t\})$ if $s \succ t$ Delete $(E \uplus \{s \approx s\}; R) \Rightarrow_{\mathsf{KBC}} (E; R)$ Deduce $(E; R) \Rightarrow_{\mathsf{KBC}} (E \cup \{s \approx t\}; R)$

if $\langle s, t \rangle \in cp(R)$

Simplify-Eq $(E \uplus \{s \approx t\}; R) \Rightarrow_{\mathsf{KBC}} (E \cup \{u \approx t\}; R)$ if $s \rightarrow_R u$

R-Simplify-Rule $(E; R \uplus \{s \to t\}) \Rightarrow_{\mathsf{KBC}} (E; R \cup \{s \to u\})$ if $t \to_R u$

L-Simplify-Rule $(E; R \uplus \{s \to t\}) \Rightarrow_{\mathsf{KBC}} (E \cup \{u \approx t\}; R)$ if $s \to_R u$ using a rule $I \to r \in R$ so that $s \sqsupset I$, see below.

Trivial equations cannot be oriented and since they are not needed they can be deleted by the Delete rule.

The rule Deduce turns critical pairs between rules in *R* into additional equations. Note that if $\langle s, t \rangle \in cp(R)$ then $s_R \leftarrow u \rightarrow_R t$ and hence $R \models s \approx t$.

The simplification rules are not needed but serve as reduction rules, removing redundancy from the state. Simplification of the left-hand side may influence orientability and orientation of the result. Therefore, it yields an equation. For technical reasons, the left-hand side of $s \rightarrow t$ may only be simplified using a rule $l \rightarrow r$, if $l \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \sqsupset l$, where the *encompassment quasi-ordering* \sqsupset is defined by $s \sqsupset l$ if $s|_p = l\sigma$ for some *p* and σ and $\sqsupset = \sqsupset \setminus \sqsubseteq$ is the strict part of \sqsupset .

