Propositional Tableau

2.4.1 Definition (α -, β -Formulas)

A formula ϕ is called an α -formula if ϕ is a formula $\neg \neg \phi_1, \phi_1 \land \phi_2, \phi_1 \leftrightarrow \phi_2, \neg(\phi_1 \lor \phi_2), \text{ or } \neg(\phi_1 \to \phi_2).$

A formula ϕ is called a β -formula if ϕ is a formula $\phi_1 \lor \phi_2$, $\phi_1 \to \phi_2$, $\neg(\phi_1 \land \phi_2)$, or $\neg(\phi_1 \leftrightarrow \phi_2)$.

2.4.2 Definition (Direct Descendant)

Given an α - or β -formula ϕ , its direct descendants are as follows:

α	Left Descendant	Right Descendant
$\neg \neg \phi$	ϕ	ϕ
$\phi_1 \wedge \phi_2$	ϕ_1	ϕ_2
$\phi_1 \leftrightarrow \phi_2$	$\phi_1 \rightarrow \phi_2$	$\phi_2 \rightarrow \phi_1$
$\neg(\phi_1 \lor \phi_2)$	$\neg \phi_1$	$\neg \phi_2$
$\neg(\phi_1 \rightarrow \phi_2)$	ϕ_1	$\neg \phi_2$

eta	Left Descendant	Right Descendant
$\phi_{1} \lor \phi_{2}$	ϕ_1	ϕ_2
$\phi_1 \rightarrow \phi_2$	$\neg \phi_1$	ϕ_2
$\neg(\phi_1 \land \phi_2)$	$\neg \phi_1$	$\neg \phi_2$
$\neg(\phi_1 \leftrightarrow \phi_2)$	$\neg(\phi_1 \rightarrow \phi_2)$	$\neg(\phi_2 \rightarrow \phi_1)$

2.4.3 Proposition ()

For any valuation \mathcal{A} :

(i) if ϕ is an α -formula then $\mathcal{A}(\phi) = 1$ iff $\mathcal{A}(\phi_1) = 1$ and $\mathcal{A}(\phi_2) = 1$ for its descendants ϕ_1 , ϕ_2 .

(ii) if ϕ is a β -formula then $\mathcal{A}(\phi) = 1$ iff $\mathcal{A}(\phi_1) = 1$ or $\mathcal{A}(\phi_2) = 1$ for its descendants ϕ_1, ϕ_2 .

Tableau Rewrite System

The tableau calculus operates on states that are sets of sequences of formulas. Semantically, the set represents a disjunction of sequences that are interpreted as conjunctions of the respective formulas.

A sequence of formulas (ϕ_1, \ldots, ϕ_n) is called *closed* if there are two formulas ϕ_i and ϕ_j in the sequence where $\phi_i = \text{comp}(\phi_j)$.

A state is *closed* if all its formula sequences are closed.

The tableau calculus is a calculus showing unsatisfiability of a formula. Such calculi are called *refutational* calculi. Recall a formula ϕ is valid iff $\neg \phi$ is unsatisfiable.

A formula ϕ occurring in some sequence is called *open* if in case ϕ is an α -formula not both direct descendants are already part of the sequence and if it is a β -formula none of its descendants is part of the sequence.

Tableau Rewrite Rules

$\begin{array}{l} \alpha \text{-Expansion} & \mathsf{N} \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n)\} \Rightarrow_{\mathsf{T}} \\ \mathsf{N} \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n, \psi_1, \psi_2)\} \end{array}$

provided ψ is an open α -formula, ψ_1 , ψ_2 its direct descendants and the sequence is not closed.

 $\begin{array}{ll} \beta\text{-Expansion} & N \uplus \{(\phi_1, \ldots, \psi, \ldots, \phi_n)\} \Rightarrow_T \\ N \uplus \{(\phi_1, \ldots, \psi, \ldots, \phi_n, \psi_1)\} \uplus \{(\phi_1, \ldots, \psi, \ldots, \phi_n, \psi_2)\} \\ \text{provided } \psi \text{ is an open } \beta\text{-formula, } \psi_1, \psi_2 \text{ its direct descendants} \\ \text{and the sequence is not closed.} \end{array}$

Tableau Properties

2.4.4 Theorem (Propositional Tableau is Sound)

If for a formula ϕ the tableau calculus computes $\{(\neg \phi)\} \Rightarrow^*_T N$ and *N* is closed, then ϕ is valid.

2.4.5 Theorem (Propositional Tableau Terminates)

Starting from a start state $\{(\phi)\}$ for some formula ϕ , the relation $\Rightarrow_{\mathsf{T}}^+$ is well-founded.

2.4.6 Theorem (Propositional Tableau is Complete)

If ϕ is valid, tableau computes a closed state out of $\{(\neg \phi)\}$.

2.4.7 Corollary (Propositional Tableau generates Models)

Let ϕ be a formula, $\{(\phi)\} \Rightarrow^*_T N$ and $s \in N$ be a sequence that is not closed and neither α -expansion nor β -expansion are applicable to s. Then the literals in s form a (partial) valuation that is a model for ϕ .

