Obvious Positions

A smaller set of positions from ϕ , called *obvious positions*, is still preventing the explosion and given by the rules:

(i) *p* is an obvious position if $\phi|_p$ is an equivalence and there is a position q < p such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) *pq* is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ and for all positions *r* with p < r < pq the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_{\rho}$ is conjunctive in ϕ if $\phi|_{\rho}$ is a conjunction and pol $(\phi, \rho) \in \{0, 1\}$ or $\phi|_{\rho}$ is a disjunction or implication and pol $(\phi, \rho) \in \{0, -1\}$.

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and pol(ϕ, p) $\in \{0, 1\}$ or $\phi|_p$ is a conjunction and pol(ϕ, p) $\in \{0, -1\}$. November 8, 2016

Polarity Dependent Equivalence Elimination

$$\begin{split} \textbf{ElimEquiv1} \quad & \chi[(\phi \leftrightarrow \psi)]_{\rho} \ \Rightarrow_{\mathsf{ACNF}} \ \chi[(\phi \to \psi) \land (\psi \to \phi)]_{\rho} \\ \text{provided pol}(\chi, \rho) \in \{0, 1\} \end{split}$$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_{\rho}$ provided $\mathsf{pol}(\chi, \rho) = -1$

Extra \top, \bot Elimination Rules

ElimTB7	$\chi[\phi \to \bot]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{\rho}$
ElimTB8	$\chi[\perp \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{p}$
ElimTB9	$\chi[\phi \to \top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{p}$
ElimTB10	$\chi[\top \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$
ElimTB11	$\chi[\phi\leftrightarrow\perp]_{\rho}$ \Rightarrow_{ACNF}	$\chi[\neg\phi]_{P}$
ElimTB12	$\chi[\phi\leftrightarrow\top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 $\operatorname{acnf}(\phi)$

Input : A formula ϕ .

Output: A formula ψ in CNF satisfiability preserving to ϕ .

- 2 whilerule (ElimTB1(ϕ),...,ElimTB12(ϕ)) do ;
- **3** SimpleRenaming(ϕ) on obvious positions;
- 4 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
- 5 whilerule (ElimImp (ϕ)) do ;
- 6 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;
- 7 whilerule (PushDisj(ϕ)) do ;

8 return ϕ ;

Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the multiset notation, e.g., $\{P, Q, P, \neg R\}$. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot , the empty disjunction, corresponds to \emptyset , the empty multiset. Clauses are typically denoted by letters *C*, *D*, possibly with subscript.

Resolution Inference Rules

 $\begin{array}{l} \textbf{Resolution} \quad (N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{\mathsf{RES}} \\ (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\}) \end{array}$

Factoring $(N \uplus \{C \lor L \lor L\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C \lor L \lor L\} \cup \{C \lor L\})$

