Chapter 3

First-Order Logic

First-Order logic is a generalization of propositional logic. Propositional logic
can represent propositions, whereas first-order logic can represent individuals
and propositions about individuals. For example, in propositional logic from
“Socrates is a man” and “If Socrates is a man then Socrates is mortal” the
conclusion “Socrates is mortal” can be drawn. In first-order logic this can be
represented much more fine-grained. From “Socrates is a man” and “All man
are mortal” the conclusion “Socrates is mortal” can be drawn.

This chapter introduces first-order logic with equality. However, all calculi
presented here, namely Tableaux (Section 3.6) and Superposition (Section ?7)
are presented only for its restriction without equality. Purely equational logic
and first-order logic with equality are presented separately in Chapter ?? and
Chapter ?7, respectively.

3.1 Syntax

Definition 3.1.1 (Many-Sorted Signature). A many-sorted signature ¥ =
(S,Q,1I) is a pair consisting of a finite non-empty set S of sort symbols, a
non-empty set Q of operator symbols (also called function symbols) over S and
a set II of predicate symbols. Every operator symbol f € Q has a unique sort
declaration f : S; x...x S, — S, indicating the sorts of arguments (also called
domain sorts) and the range sort of f, respectively, for some Si,...,5,,5S € S
where n > 0 is called the arity of f, also denoted with arity(f). An operator
symbol f € Q with arity 0 is called a constant. Every predicate symbol P € II
has a unique sort declaration P C Sy x ... x S,,. A predicate symbol P € II
with arity 0 is called a propositional variable. For every sort S € S there must
be at least one constant a € 2 with range sort S.

In addition to the signature X, a variable set X', disjoint from (2 is assumed, so
that for every sort S € S there exists a countably infinite subset of X' consisting
of variables of the sort S. A variable z of sort S is denoted by zg.

Definition 3.1.2 (Term). Given a signature ¥ = (S,,1I), a sort S € S and
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94 CHAPTER 3. FIRST-ORDER LOGIC

a variable set X, the set Ts(X, X) of all terms of sort S is recursively defined
by (i) zs € Ts(X,X) if x5 € X, (ii) f(t1,...,tn) € Ts(E,X) if f € Q and
f:S1x...x8, = Sandt; € Ts,(X,X) for every i € {1,...,n}.

The sort of a term ¢ is denoted by sort(t), i.e., if t € Ts(X, X) then sort(t) =
S. A term not containing a variable is called ground.

For the sake of simplicity it is often written: T'(X, X') for Jgcs Ts (%, &), the
set of all terms, T's(X) for the set of all ground terms of sort S € S, and T'(X)
for (Jges Ts(X), the set of all ground terms over ¥.

Definition 3.1.3 (Equation, Atom, Literal). If s,t € Ts(X, X) then s & t is an
equation over the signature ¥. Any equation is an atom (also called atomic for-
mula) as well as every P(ty,...,t,) where t; € Ts, (2, X) foreveryi € {1,...,n}
and P € II, arity(P) = n, P C S; X ... x S,. An atom or its negation of an
atom is called a literal.

The literal s ~ ¢ denotes either s ~ t or ¢t &~ s. A literal is positive if it is an
atom and negative otherwise. A negative equational literal —(s & t) is written
as s # t.

Non equational atoms can be transformed into equations: For this a
given signature is extended for every predicate symbol P as follows:
(i) add a distinct sort B to S, (ii) introduce a fresh constant true of
the sort B to , (iii) for every predicate P, P C S; X ... x S, add a fresh

function fp: Si,...,S, — B to Q, and (iv) encode every atom P(t1,...,t,) as
a function fp : Si,...,S, — B. Thus, predicate atoms are turned into equations
fp(ti,-..,tn) = true. are overloaded here.

Definition 3.1.4 (Formulas). The set FOL(X, X) of many-sorted first-order
formulas with equality over the signature X is defined as follows for formulas
¢, € F5(X) and a variable x € X

FOL(E, X) Comment
1 falsum
T verum
P(ty,...,tn),s =t atom
(o) negation
(pNY) conjunction
(p V) disjunction
(¢ — ) implication
(¢ < ) equivalence
Vz.p universal quantification
dx.¢ existential quantification

A consequence of the above definition is that PROP(X) C FOL(Y', X) if
the propositional variables of ¥ are contained in ¥’ as predicates of arity 0. A
formula not containing a quantifier is called quantifier-free.
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Definition 3.1.5 (Positions). It follows from the definitions of terms and for-
mulas that they have tree-like structure. For referring to a certain subtree,
called subterm or subformula, respectively, sequences of natural numbers are
used, called positions (as introduced in Chapter 2.1.3). The set of positions of
a term, formula is inductively defined by:

pos(z) :={e}ifxe X
pos(¢) :={e}if p€{T, L}
pos(—¢) = {e}U{lp|p € pos(¢)}
pos(po)) :={e}U{lp|p € pos(¢)}U{2p|p € pos(s)}
pos(s~t) :={efU{lp|p€pos(s)}U{2p|p € pos(t)}
pos(f(ti,... tn)) = {e} Ui {ip| p € pos(ti)}
pos(P(t1,...,tn)) :={e}U U?:l{ip | p € pos(t;)}
pos(Vr.¢) := {e}U{lp|p € pos(¢)}
pos(Fz.¢) := {e}U{lp|p € pos(®)}

where o € {A,V, >, <} and t; € T(E,X) for all i € {1,...,n}.

The prefiz orders (above, strictly above and parallel), the selection and re-
placement with respect to positions are defined exactly as in Chapter 2.1.3.

An term ¢ (formula ¢) is said to contain another term s (formula ) if t, = s
(¢pp = ). It is called a strict subexpression if p # €. The term ¢ (formula ¢)
is called an immediate subexpression of s (formula ) if |p| = 1. For terms a
subexpression is called a subterm and for formulas a subformula, respectively.

The size of a term ¢ (formula ¢), written |¢| (|¢|), is the cardinality of pos(t),
ie., [t| := |pos(t)| (|¢| := | pos(¢)]). The depth of a term, formula is the maximal
length of a position in the term, formula: depth(t) := maz{|p| | p € pos(t)}
(depth(¢) := maz{|p| | p € pos(¢)}). The set of all variables occurring in a
term ¢ (formula ¢) is denoted by vars(t) (vars(phi)) and formally defined as
vars(t) := {z € X | x = t|p,p € pos(t)} (vars(¢) := {z € X |z = ¢|p,p €
pos(4)}). A term ¢ (formula ¢) is ground if vars(t) = 0 (vars(¢) = 0).

Note that vars(Vz.a ~ b) = () where a, b are constants. This is justified by the
fact that the formula does not depend on the quantifier, see semantics below. The
set of free variables of a formula ¢ (term t) is given by fvars(¢, #) (fvars(t, 0)) and
recursively defined by fvars(¢ o s, B) := fvars(¢, B) U fvars(ys, B) where o €
{\,V, =, &}, fvars(Ve.y, B) := fvars(y, BU{x}), fvars(3z.¢, B) := fvars(y, BU
{z}), tvars(—¢, B) := fvars(y, B), fvars(L, B) := vars(¢) \ B (fvars(t, B) :=
vars(t) \ B. For fvars(¢, () I also write fvars(¢)

In Vz.¢ (3z.¢) the formula ¢ is called the scope of the quantifier. An oc-
currence ¢ of a variable z in a formula ¢ (¢|, = ) is called bound if there is
some p < g with ¢|, = Vz.¢' or ¢|, = Jz.¢'. Any other occurrence of a vari-
able is called free. A formula not containing a free occurrence of a variable is
called closed. If {z1,...,z,} are the variables freely occurring in a formula
¢ then Vzq,...,z,.¢0 and Jz;,...,2,.¢ (abbreviations for Vz,.Vzs...Vz,.0,
1 .Vz, ...V, .0, respectively) are the universal and the ezistential closure of

0.
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Example 3.1.6. For the literal =P(f(x,g(a))) the atom P(f(z,g(a))) is an
immediate subformula of occurring at position 1. The terms z and g(a) are
strict subterms occurring at positions 111 and 112, respectively. The for-
mula =P(f(z,g(a)))[bli11 = ~P(f(b,g(a))) is obtained by replacing = with b.
pos(=P(f(z,g(a)))) = {e,1,11,111,112, 1121} meaning its size is 6, its depth 4
and vars(~P(f(x, 9(a)))) = {z}.

The polarity of a subformula ¢ = ¢|, at position p is pol(¢, p) where pol is
recursively defined by
=1
—pol(¢, p)

pol(¢, €)
pol(—¢, 1p)
pol(¢1 © ¢a,ip) := pol(di,p) if o € {A,V}
pol(¢1 = ¢2,1p) —pol(¢1,p)
p01(¢1 — ¢27 p; - p01(¢27 )
p)
)
)
)

pol(¢1 <> ¢o,ip) =0

pol(P(t1,-..,tpn), =1

pol(t = s,p) =1
pol(Vz.¢,1p)  := pol(¢, p)
pol(3z.¢,1p)  := pol(¢, p)

3.2 Semantics

Definition 3.2.1 (Z-algebra). Let ¥ = (S,Q,II) be a signature with set of
sorts S, operator set 2 and predicate set II. A X-algebra A, also called -
interpretation, is a mapping that assigns (i) a non-empty carrier set S4 to every
sort S € S, so that (Sl)Aﬂ(Sg)A = ) for any distinct sorts S1,Se € S, (ii) a total
function fA (S1)A % ...x(S,)* = (S)™ to every operator f € Q, arity(f) =n
where f: S x ... % S — S, (iii) a relation P4 C ((S1)A x ... x (Sp)?) to
every predicate symbol P € II, arity(P) = m. (iv) the equality relation becomes
~A={(e,e) | e € UA} where the set UA 1= Jge5(S)? is called the universe of
A.

A (variable) assignment, also called a valuation for an algebra A is a function
B : X = Ux so that f(z) € Sy for every variable z € X', where S = sort(z). A
modification [z — e] of an assignment [ at a variable z € X, where e € Sy
and S = sort(x), is the assignment defined as follows:

e ifx=y

ple = ely) = {

B(y) otherwise.

Informally speaking, the assignment S[x — e] is identical to 8 for every variable
except x, which is mapped by B[z — €] to e.

The homomorphic extension A(3) of 8 onto terms is a mapping T'(X, X') —
Uy defined as (i) A(B)(z) = B(z), where x € X and (ii) A(B)(f(t1,...,tn)) =
fa(A(B)(t1), .-, A(B)(tn)), where f € Q, arity(f) = n.
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Given a term ¢ € T'(X, X'), the value A(B)(t) is called the interpretation of
t under A and (. If the term ¢ is ground, the value A(5)(¢) does not depend
on a particular choice of 3, for which reason the interpretation of ¢ under A is
denoted by A(t).

An algebra A is called term-generated, if every element e of the universe U 4
of A is the image of some ground term ¢, i.e., A(t) = e.

Definition 3.2.2 (Semantics). An algebra .4 and an assignment 3 are extended
to formulas ¢ € FOL(X, X') by

AB)(L) = 0
AB)(T) =1
AB) (s =t) = 1if A(B)(s) = A(B)(t) and 0 otherwise
AB)(P(t1,...,tn)) = 1 it (A(B)(t1),...,A(B)(tn)) € P4 and 0 otherwise
AB) ) = 1-AB)9)
ABOAD) = miAB D). ABOY
APB) bV ) = max({A(B)(9), A(B)(¥)})
APB) o —y) = max({(1 - A(B)(9)), AB)(¥)})
AB)(¢ <) = if A(B)(¢) = A(B)(¢) then 1 else 0
A(B)3zs.¢) = 1if A(B[z — e])(¢) =1 for some e € S4 and 0 otherwise

A(B)Ves.¢) = 1if A(Blx — e])(¢) =1 for all e € S4 and 0 otherwise

A formula ¢ is called satisfiable by A under 8 (or valid in A under (8) if
A, B E ¢; in this case, ¢ is also called consistent; satisfiable by A if A,8 = ¢
for some assignment (; satisfiable if A,3 | ¢ for some algebra A and some
assignment f3; valid in A, written A = ¢, if A, 8 = ¢ for any assignment ; in
this case, A is called a model of ¢; valid, written |= ¢, if A, 8 |= ¢ for any algebra
A and any assignment £; in this case, ¢ is also called a tautology; unsatisfiable
if A, [~ ¢ for any algebra A and any assignment J3; in this case ¢ is also called
inconsistent.

Note that L is inconsistent whereas T is valid. If ¢ is a sentence that is
a formula not containing a free variable, it is valid in A if and only if it is
satisfiable by A. This means the truth of a sentence does not depend on the
choice of an assignment.

Given two formulas ¢ and v, ¢ entails 1, or ¢ is a consequence of ¢, written
¢ = 1, if for any algebra A and assignment 3, if A, 8 |= ¢ then A, 3 = ¢. The
formulas ¢ and ¢ are called equivalent, written ¢ |5 ¢, if ¢ |= ¢ and ¢ = ¢. Two
formulas ¢ and 1 are called equisatisfiable, if ¢ is satisfiable iff ¢ is satisfiable (not
necessarily in the same models). Note that if ¢ and ¢ are equivalent then they
are equisatisfiable, but not the other way around. The notions of “entailment”,
“equivalence” and “equisatisfiability” are naturally extended to sets of formulas,
that are treated as conjunctions of single formulas. Thus, given formula sets M,
and Mo, the set M, entails M, written M; = Mo, if for any algebra A and
assignment 3, if A, 8 |= ¢ for every ¢ € M, then A, 8 | ¢ for every ¢» € M,. The
sets My and M, are equivalent, written My H Mo, if My |= M and My |= M;.
Given an arbitrary formula ¢ and formula set M, M |= ¢ is written to denote
M E {¢}; analogously, ¢ = M stands for {¢} E M.
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Since clauses are implicitly universally quantified disjunctions of literals, a
clause C'is satisfiable by an algebra A if for every assignment 3 there is a literal
L € C with A, |= L. Note that if C = {Ly,..., L} is a ground clause, i.e.,
every L; is a ground literal, then A4 |= C' if and only if there is a literal L; in C
so that A |= L;. A clause set N is satisfiable iff all clauses C' € N are satisfiable
by the same algebra A. Accordingly, if N and M are two clause sets, N = M
iff every model A of N is also a model of M.

3.3 Equality

The equality predicate is build into the first-order language in Section 3.1 and
not part of the signature. It is a first class citizen. This is the case although
it can be actually axiomatized in the language. The motivation is that firstly,
many real world problems naturally contain equations. They are a means to
define functions. Then predicates over terms model properties of the functions.
Secondly, without special treatment in a calculus, it is almost impossible to
automatically prove non-trivial properties of a formula containing equations.

In this section I firstly show that any formula can be transformed into a
formula where all atoms are equations. Secondly, that any formula containing
equations can be transformed into a formula where the equality predicate is
replaced by a fresh predicate together with some axioms. In the first case the
respective clause sets are equivalent, in the second case the transformation is
satisfiability preserving. For the replacement of any predicate R by equations
over a fresh function fr we assume an additional fresh sort Bool with two fresh
constants true and false.

Inqu X[R(tl,la .. 7t17n)]p1 .. [R(tm71, .. 7tm7n)]pm =IE X[fR(tl,h PN ,th) ~
truelp, ... [fR(tm,1,- -, tm,n) & true],,,
provided R is a predicate occurring in x, {p1,...,pm} are all positions of atoms

with predicate R in x and fg is new with appropriate sorting

Proposition 3.3.1. Let x = X’ then x is satisfiable (valid) iff x’ is satisfiable
(valid).

Proof. (Sketch) The basic proof idea is to establish the relation (#{,...,t2) €

RA iff fj;{“(tf‘, cont) = truet. Furthermore, the sort of true is fresh to y and
the equations fg(ti,...,t,) = true do not interfere with any term ¢; because
the fgr are all fresh and only occur on top level of the equations. O

When removing equality from a formula it needs to be axiomatized. For
simplicity, I assume here that the considered formula y is one-sorted, i.e., there
is only one sort occurring for functions, relations in x. The extension to formulas
with many sorts is straightforward and discussed below.

RemEq Xl = r1lpy - [l = Tmlp,, =RE X[EU1L,71)]py - - [E(m, Tm)]pn A
def(x, E)
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provided {pi,...,pm} are all positions of equations [; = r; in x and E is a new
binary predicate

The formula def(x, E) is the axiomatization of equality for y and it consists
of a conjunction of the equivalence relation axioms for £
Vo.E(z,x)
Vz,y.(E(z,y) = E(y,z))
Va,y, z.((E(2,y) A Bz, 2)) = E(x, 2))
plus the congruence axioms for E for every n-ary function symbol f
Ve, yr, - oy Un-(E(@1,91) Ao AE(Zn,un)) = BE(f(@1, - 20), f(W1,-- -, yn)))
plus the congruence axioms for E for every m-ary predicate symbol P
vxlayla' e 7-Tmaym'((E(x1ay1) AT /\E(fm,ym) /\P(xla s ,xm)) - P(yla s ,ym)

Proposition 3.3.2. Let x =rg X’ then y is satisfiable iff ¥’ is satisfiable.

Proof. (Sketch) The identity on an algebra (see Definition 3.2.2) is a congruence
relation proving the direction from left to right. The direction from right to left
is more involved. O

Note that =-gg is not validity preserving. Consider the simple example for-
mula a & a which is valid for any constant a. Its translation E(a,a) A def(a ~
a, F) is not valid, e.g., consider an algebra with E4 = ().

Now in case x has many different sorts then for each sort S one new fresh
predicate Eg is needed for the translation. For each of these predicates equiv-
alence relation and congruence axioms need to be generated where for every
function f only one axiom using Eg is needed, where S is the range sort of S.
Similar for the domain sorts of f and accordingly for predicates.

3.4 Substitution and Unifier

Definition 3.4.1 (Substitution). A substitution is a mapping o : X — T'(Z, X)
so that

1. o(x) # x for only finitely many variables z and

2. sort(x) = sort(t) for every variable € X that is mapped to a term
t e Ts(S, X).

The application o(x) of a substitution ¢ to a variable z is often written in
postfix notation as zo. The variable set dom(c) := {z € X' | zo # z} is called
the domain of o. The term set codom(c) := {zo | z € dom(o)} is called the
codomain of o. From the above definition of substitution it follows that dom(o)
is finite for any substitution . The composition of two substitutions o and 7
is written as a juxtaposition o7, i.e., toT = (to)7. A substitution o is called
idempotent if oo = 0. o is idempotent iff dom(s) N vars(codom(c)) = .

Substitutions are often written as {zy — t1,...,2, — t,} if dom(o) =
{z1,...,2,} and z,0 = t; for every i € {1,...,n}. The modificationof a substi-
tution o at a variable z is defined as follows:
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[t ify=u
olz = t)(y) = { a(y) otherwise

A substitution ¢ is identified with its extension to expression and defined as
following:

1. lo=1,

2. To=T,

3. (f(t1,... ta))o = f(t10, ... tao),

4. (P(ty,...,ta))o = P(t10, ... ta0),

5. (s~ t)o = (so ~ to),

6. (=)o = (o),

7. (¢ 01)o = ¢o 0 ho where o € {V, A},

8. (Qz¢)o = Qz(go[x — z]) where Q € {V, 3}, z and z are of the same sort

and z is a fresh variable.

The result eo of applying a substitution ¢ to an expression e is called an
instance of e. The substitution o is called ground if it maps every domain
variable to a ground term. If the application of a substitution o to an expression
e produces a ground expression eo then eo is called ground instance of e. A
ground substitution o is called grounding for an expression e if ec is ground. A
substitution o is called variable renaming if im(o) C X and for any z,y € X, if
x # y then zo # yo.

Definition 3.4.2 (Unifier). Two terms s and ¢ are said to be unifiable if there
exists a substitution ¢ so that so = to, the substitution o is then called a unifier
of s and ¢. The unifier o is called most general unifier, written o = mgu(s, t), if
any other unifier 7 of s and ¢ can be represented as 7 = o7, for some substitution

T

3.5 Unification Calculi

The first calculus is the naive standard unification calculus that is typically
found in the (old) literature on automated reasoning. A state of the naive stan-
dard unification calculus is a set of equations E or 1, where L denotes that
no unifier exists. The set F is also called a unification problem. The start state
for checking whether two terms s, ¢ with sort(s) = sort(¢) (or atoms A, B) are
unifiable is the set E = {s =t}. A variable z is solvedin Eif E = {x =t} W E’,
x & vars(t) and z ¢ vars(E).

Tautology Eyw{t=t} =su E
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Decomposition EW{f(s1,.-.,8n) = f(t1,.-.,tn)} =su EU{s; =
tla"'asn:tn}

Clash B {f(51,- ) = g(51,- - 5m)} Ssu L
iff#g

Substitution EW{z =t} =su E{z—»t}U{z =1t}

if z € vars(E) and x & vars(t)

Occurs Check Ey{z=t} =su L

if x #t and = € vars(t)

Orient Ey{t=z} =su EU{z =t}

iftgx

Theorem 3.5.1 (Soundness, Completeness and Termination of =gy). If s,t
are two terms with sort(s) = sort(¢) then

L. if {s = t} =&, E then any equation (s' = t') € E is well-sorted, i.e.,
sort(s') = sort(t').

2. =gy terminates on {s = t}.

3. if {s =t} =¢y E then o is a unifier (mgu) of E iff o is a unifier (mgu) of

{s =t}.
4. if {s =t} =&y L then s and ¢ are not unifiable.

5. if {s =t} =&y {#1 = t1,...,2, = t,} and this is a normal form, then
{1 - t1,..., 2y — t,} is an mgu of s, t.

Proof. 1. by induction on the length of the derivation and a case analysis for
the different rules.

2. for a state E = {sy = t1,...,8n, = t,} take the measure u(E) := (n, M, k)
where n is the number of unsolved variables, M the multiset of all term depths of
the s;, t; and k the number of equations ¢ = z in F where ¢ is not a variable. The
state L is mapped to (0,0, 0). Then the lexicographic combination of > on the
naturals and its multiset extension shows that any rule application decrements
the measure.

3. by induction on the length of the derivation and a case analysis for the
different rules. Clearly, for any state where Clash, or Occurs Check generate L
the respective equation is not unifiable.

4. a direct consequence of 3.

5.if E = {x; =t1,...,2, = t,} is a normal form, then for all z; = ¢; we have
x; & vars(t;) and z; & vars(E \ {z; = t;}), so {x1 = t1,...,2y = tp,}H{z1 —
ti,...,Tpn — tn} = {tl =11,...,tp = tn} and hence {:El =ty ., Ty tn} is

an mgu of {z1 =t1,...,2, = t,}. By 3. it is also an mgu of s, ¢t. O
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Example 3.5.2 (Size of Standard Unification Problems). Any normal form of
the unification problem E given by

{f(z1,9(z1,21), 23, ..., 9(Tn, 1)) = f(9(20,T0), T2, g(T2,T2), ..., Tny1)}
with respect to =gy is exponentially larger than E.

The second calculus, polynomial unification, prevents the problem of expo-
nential growth by introducing an implicit representation for the mgu. For this
calculus the size of a normal form is always polynomial in the size of the input
unification problem.

Tautology EW{t=t} =py E

Decomposition EW{f(s1,...,8n) = f(t1,...,tn)} =pu EW{s =
tl,...,SnZtn}

Clash EW{f(tr,...,tn) =9(s1,-.-,8m)} =pUu L
iff#g

Occurs Check Ey{z=t} =py L

if x #t and = € vars(t)

Orientation EW{t=z} =py EW{z =t}

iftg X

Substitution Ev{z =y} =py E{fz—ytu{z =y}

if z € vars(E) and x # y
Cycle Ew{zi=t,...,zn =tn} =pu L

pi = Tit1,tnlp, = x1 and some p; # €

if there are positions p; with ¢;
Merge Ev{z=t,x=s} =py EW{zr=tt=s}
ift,s ¢ X and |t| < |s|

Theorem 3.5.3 (Soundness, Completeness and Termination of =py). If s,¢
are two terms with sort(s) = sort(t) then

1. if {s =t} =%y E then any equation (s' = t') € E is well-sorted, i.e.,
sort(s") = sort(t').

2. =py terminates on {s = t}.

3. if {s =t} =py E then o is a unifier (mgu) of E iff ¢ is a unifier (mgu) of
{s =t}.

4. if {s =t} =5y L then s and ¢ are not unifiable.

Theorem 3.5.4 (Unifier generated by =>py). Let {s = t} =py {z1 =
t1,..., %y =tn}. Then
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v | Descendant y(t)
Vrg. 1/1{1‘5 — t}
~Jzs.p | p{rs =t}
for any ground term t € Ts(X)

5§ | Descendant 6(c)
Jrs.p | p{zs = c}
—Vzg.p | Wp{rs — c}
for some fresh Skolem constant ¢ € Ts(X)

Figure 3.1: v- and §-Formulas

1. z; # z; for all i # j and without loss of generality z; ¢ vars(¢;1y) for all
i,k,1<i<n,i+k<n.

2. the substitution {z; > t; }{zs — t2}...{z, — t,} is an mgu of s = ¢.

Proof. 1. If x; = z; for some ¢ # j then Merge is applicable. If z; € vars(t;)
for some i then Occurs Check is applicable. If the z; cannot be ordered in the
described way, then either Substitution or Cycle is applicable.

2. Since x; ¢ vars(t; 1 the composition yields the mgu. O

3.6 First-Order Tableaux

The different versions of tableaux for first-order logic differ in particular in the
treatment of variables by the tableaux rules. The first variant is standard first-
order tableaux where variables are instantiated by ground terms.

Definition 3.6.1 (v-,0-Formulas). A formula ¢ is called a y-formula if ¢ is a
formula Vzg.yp or =Jzg.4p. A formula ¢ is called a d-formula if ¢ is a formula
Jxg.1) or =Vag.1).

Definition 3.6.2 (Direct Standard Tableaux Descendant). Given a 5- or 6-
formula ¢, Figure 3.1 shows its direct descendants.

For the standard first-order tableaux rules to make sense “enough” Skolem
constants are needed in the signature, e.g., countably infinitely many for each
sort. A § formula ¢ occurring in some sequence is called open if no direct de-
scendant of it is part of the sequence. In general, the number of v descendants
cannot be limited for a successful tableaux proof.

~v-Expansion NU{(1,..., 0, ..., n)} =rr NI{(d1,...,0,...,0n,0")}

provided 9 is a y-formula, ¢’ a (t) descendant where ¢ is an arbitrary ground
term in the signature of the sequence (branch) and the sequence is not closed.

J-Expansion NU{(1,..., 0, ..., 00)} =rr NI{(d1,...,0,...,0n,0")}



104 CHAPTER 3. FIRST-ORDER LOGIC

provided ¢ is an open d-formula, ¥' a §(c) descendant where c is fresh to the
sequence and the sequence is not closed.

The standard first-order tableaux calculus consists of the rules a-, and
B-expansion (see Section 2.4) and the above two rules y-Expansion and §-
Expansion.

Theorem 3.6.3 (Standard First-Order Tableaux is Sound and Complete). A
formula ¢ (without equality) is valid iff standard tableaux computes a closed
state out of {(—¢)}.

Skolem constants are sufficient: In a d-formula 3z ¢, 3 is the outermost quan-
tifier and x is the only free variable in ¢. The v rule has to be applied several
times to the same formula for tableaux to be complete. For instance, construct-
ing a closed tableau for

{Va (P(x) = P(f(x))), P(b), ~P(f(f(b)))}

is impossible without applying y-expansion twice on one path.

The main disadvantage of standard first-order tableau is that the v ground
term instances need to be guessed. The whole complexity of the problem lies in
this guessing as for otherwise tableaux terminates. A natural idea is to guess
ground terms that can eventually be used to close a branch. This is the idea
of free-variable first-order tableaux. Instead of guessing a ground term for a
~ formula the variable remains, the instantiation is delayed until a branch is
closed for two literals via unification. As a consequence, for § formulas no longer
constants are introduced but Skolem terms in the formerly universally quantified
variables that had the § formula in their scope.

The new calculus suggests to keep track of scopes of variables, so I move
from a state as a set of sequences of formulas to a set of sequences of pairs
l; = (¢s, X;) where X; is a set of variables.

Definition 3.6.4 (Direct Free-Variable Tableaux Descendant). Given a 7- or
d-formula ¢, Figure 3.2 shows its direct descendants.

~v-Expansion Ng{(ly,..., (¢, X),...;ln)} =rr NIH{(y,..., (0, X),... 1, (¥, XU
{y})}

provided ¢ is a y-formula, ¢ a v(y) descendant where y is fresh to the sequence
(branch) and the sequence is not closed.

d-Expansion Ne{(l1,...,(0,X),...,ln)} =prr N&{(1,...,(,X),..., 0, (¥, X))}

provided % is an open d-formula, ¥' a 6(f(y1,.-.,yn)) descendant where f is
fresh to the sequence, X = {y1,...,y,} and the sequence is not closed.

Branch-Closing N W {(l1,...,(L,X),...,(K,X"),...,l,)} =rr NouW
{(¢17---7(L7X)7---7(K7Xl)7---7¢n7}0
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v ] Descendant v(y)
Ves.ap | Y{zs — y}

—~Jrg.4p | plrs =y}
for a fresh variable y, sort(y) = S

§ | Descendant §(f(y1,.--,yn))

3305-1/1 1/1{935 Hf(ylaayn)}
Vas. | W{zs = fy, .- yn)}
for some fresh Skolem function f

where f(y1,...,yn) € Ts(Z)

Figure 3.2: v- and §-Formulas

provided K and L are literals and there is an mgu ¢ such that Ko = —Lo and
the sequence is not closed.

The standard first-order tableaux calculus consists of the rules a-, and -
expansion (see Section 2.4) which are adapted to pairs and the above three rules
~v-Expansion, §-Expansion and Branch-Closing.

Theorem 3.6.5 (Free-variable First-Order Tableaux is Sound and Complete).
A formula ¢ (without equality) is valid iff free-variable tableaux computes a
closed state out of {(—¢)}.

Example 3.6.6.
1. —[FwVYzR(z,w, f(z,w)) = JwVzIyR(z,w, y)]

2. JwVz R(z,w, f(z,w)) 11 [o]
3. —JwVzdy R(z,w,y) 12 [a]
4. Vz R(z,c, f(x,c)) 2(e) 16]
3. _'vley R(l‘, Ulay) 3(U1) [7]
6. =3y R(g(v1),v1,y) 5(g(v1)) [0]
7. R(UQv & f(v27 C)) 4(’02) [7]
8. =R(g(v1),v1,v3) 6(vs) []

7. and 8. are complementary (modulo unification):

Vg = 9(“1), C =1, f(U2ac) = U3

is solvable with an mgu o = {v; = ¢, v2 — g(c), vs —= f(g(c),c)}, and hence,
To is a closed (linear) tableau for the formula in 1.

Problem: Strictness for v is still incomplete. For instance, constructing a
closed tableau for

{Va (P(x) = P(f(x))), P(b), ~P(f(f(b)))}

is impossible without applying y-expansion twice on one path.
Semantic Tableau vs. Resolution
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1. Tableau: global, goal-oriented, “backward”.
2. Resolution: local, “forward”.

3. Goal-orientation is a clear advantage if only a small subset of a large set
of formulas is necessary for a proof. (Note that resolution provers saturate
also those parts of the clause set that are irrelevant for proving the goal.)

4. Resolution can be combined with more powerful redundancy elimination
methods; because of its global nature this is more difficult for the tableau
method.

5. Resolution can be refined to work well with equality; for tableau this seems
to be impossible.

6. On the other hand tableau calculi can be easily extended to other logics;
in particular tableau provers are very successful in modal and description
logics.

3.7 First-Order CNF Transformation

Similar to the propositional case, first-order superposition operates on clauses.
In this section I show how any first-order sentence can be efficiently transformed
into a CNF, preserving satisfiability. To this end all existentially quantified
variables are replaced with so called Skolem functions. Similar to renaming this
replacement only preserves satisfiability. Eventually, all variables in clauses are
implicitly universally quantified.

As usual, the CNF transformation is done by a set of rules. All rules known
from the propositional case apply. Further rules deal with the quantifies V, 3
and some of the propositional rules need an extension in order to cope with
first-order variables.

The first set of rules eliminates T and L from a first-order formula.

EimTB1  x[(#AT), =cne x[4]p
ELimTB2 x[(¢A L), =cne x[L]p
ELimTB3 x[(¢V ), =cne X[Th
ELimTB4 x[(¢V 1), =cnk X4y
EimTB5 x[-L], =cxe X[Tly

ElimTB6 x[~T], =c~nr x[Llp
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EimTB7 x[¢ ¢ 1], =one X[~¢]p

ElimTB8 x[¢ < T, =onk X[y

ElimTB9 x[¢ — L], =one X[74],

ELimTB10 x[¢ = T], =onr X[Tlp

ElimTB11 Xx[L — ¢], =one X[T

ElimTB12 X[T — ¢}, =onr x[9]p

ElimTB13 x[{¥,3}=.T], =cxr X[Tl

ElimTB14 x[{V,3}z. 1], =c~nr x[Llp

where the expression {V,3}z.¢ covers both cases Vz.¢ and Jz.¢. The next
step is to rename all variable such that different quantifiers bind different vari-
ables. This step is necessary to prevent a later on confusion of variables.

RenVar ¢ =cNF 9o
for o = {}

Once the variable renaming is done, renaming of beneficial subformulas is
the next step. The mechanism of renaming and the concept of a beneficial sub-
formula is exactly the same as in propositional logic. The only difference is
that renaming does introduce an atom in the free variables of the respective
subformula. When some formula 1 is renamed at position p an atom P(zy,),
Zy = Z1,...,Ty replaces 1|, where fvars(¢|,) = {®1...,2,}. The respective
definition of P(z;,) becomes

V. (P(zn) — ) if pol(y,p) =1
def(yp, p, P(27)) := § Van-(¥lp — P(ay)) if pol(s,p) = —1
Va,.(P(25) < l,) if pol(¢,p) =0

and the rule SimpleRenaming is changed accordingly.

SimpleRenaming ¢ =onr X[A1lp [A2]ps - - [Anlp, A def(d,p1, A1) A
oo A def(x[Ai]p [A2]ps - - - [An=1lpn_1>Pn, An)

provided {p1,...,pn} C pos(¢) and for all 4,i + j either p; || pi+; or p; > piy;j
and the A; = Pi(z;1,...,%:k;) where fvars(d|p,) = {zi1,..., %, } and all P;
are different and new to ¢
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Negation normal form is again done as in the propositional case with addi-
tional rules for the quantifiers.

ElimEquivl x[(¢ < ¥)], =cne x[(¢ = ) A (Y = @)l
provided pol(x,p) € {0,1}

ElimEquiv2 x[(¢ < ¢)], =oene x[(0AY) V(g A =))]p
provided pol(y,p) = —1

ElimImp  x[(¢ = ¢¥)]p, =c~nk x[(—0 V)],

PushNegl x[-(¢V )], =one X[(m¢ A=),

PushNeg2 x[-(¢ AY)], =cnr X[(—¢ V=),

PushNeg3 x[-—¢], =cnr X[9]p

PushNegd x[-Vz.4], =cnr X[Fz.—d)p

PushNegh x[-3z.4], =cnr Xx[VZ.7¢],

In propositional logic after NNF, the CNF can be generated using distribu-
tivity. In first-order logic the existential quantifiers are eliminated first by the
introduction of Skolem functions. In order to receive Skolem functions with few
arguments, the quantifiers are first moved inwards as far as passible. This step
is called mini-scoping.

MiniScopel x[Vz.(p1 o 92)], =conk X[(VE.4h1) o 2],
provided o € {A,V}, x ¢ fvars(ys)

MiniScope2 x[3z.(1 0o ¢2)], =onk X[(Fz.4h1) 0 ¥a]p
provided o € {A,V}, x ¢ fvars(ys)

MiniScope3 x[Vz.(¢1 Aa)], =ene X[(Vzah1) A (Ya.ah2)0],
where o = {}, x € (fvars(s1) N fvars(i)z))

MiniScope4 x[3z.(1 V ¢2)]p, =ene X[(Fz.1) V (Fz.ah)o],
where o = {},z € (fvars(¢n) N fvars(is))
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The rules MiniScopel, MiniScope2 are applied modulo the commutativity
of A, V. Once the quantifiers are moved inwards Skolemization can take place.

Skolemization X[3z,%], =onr X[V{z = f(y1,--,¥n)}p

provided there is no ¢, ¢ < p with ¢|, = Fz'Y’, fvars(Iz.y) = {y1,...,yn},
arity(f) = n is a new function symbol to ¢ matching the respective sorts of the
y; with range sort sort(z)

Example 3.7.1 (Mini-Scoping and Skolemization). Consider the simple for-
mula Vz.3y.(R(z,z) A P(y). Applying Skolemization directly to this formula,
without mini-scoping results in

Va.3y.(R(z,x) A P(y)) = CNF,Skolemization VZ-(R(x, ) A P(g(x))

for a unary Skolem function g because fvars(Jy.(R(z,z) A P(y))) = {z}. Apply-
ing mini-scoping and then Skolemization generates

Va:EIy(R(:U, :U) A P(y)) iE}NF,MiniScopeZl VZER(ZL”, ZL”) A Elyp(y)
iCNF,Skolemization Vl'R(l', iE) A P(a’)
for some Skolem constant a because fvars(Jy.P(y)) = 0. Now the former for-
mula after Skolemization is seriously more complex than the latter. The former

belongs to an undecidable fragment of first-order logic while the latter belongs
to a decidable one (see Section 3.14).

Finally, the universal quantifiers are removed. In a first-order logic CNF any
variable is universally quantified by default. Furthermore, the variables of two
different clauses are always assumed to be different.

RemForall x[Vz. Y], =cene X[Yp

The actual CNF is then done by distributivity.

PushDisj  x[(¢1 A d2) VY], =onk X[(¢1 V) A(d2 V),

Theorem 3.7.2 (Properties of the CNF Transformation). Let ¢ be a first-order
sentence, then

1. cnf(¢) terminates
2. ¢ is satisfiable iff cnf(¢) is satisfiable

Proof. (Idea) 1. is a straightforward extension of the propositional case. It is
easy to define a measure for any line of Algorithm 6.

2. can also be established separately for all rule applications. The rules SimpleR-
enaming and Skolemization need separate proofs, the rest is straightforward or
copied from the propositional case. O
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Algorithm 6: cnf(¢)

Input : A first-order formula ¢.

Output: A formula ¢ in CNF satisfiability preserving to ¢.
whilerule (EimTB1(g),..., EimTB14(¢)) do ;
RenVar(¢);

SimpleRenaming(¢$) on obvious positions;

whilerule (ElimEquivl(¢),ElimEquiv2(¢)) do ;
whilerule (ElimImp(¢)) do ;

whilerule (PushNegl(¢),...,PushNeg5(¢)) do ;
whilerule (MiniScopel(¢),...,MiniScope4(¢)) do ;
whilerule (Skolemization(¢)) do ;

whilerule (RemForall(¢)) do ;

whilerule (PushDisj(¢)) do ;

return ¢;

© 0 N O R WY =

=
= o

In addition to the consideration of repeated subformulas, discussed

in Section 2.5, for first-order renaming another technique can pay off:
generalization. Consider the formula [¢1 V (Q1(a1) A Q2(a1))] A [p2 V (Q1(az) A
Q2(a2))]A...Aldn V (Q1(an) AQ2(ay)]. SimpleRenaming on obvious renamings
applied to this formula will independently rename any occurrences of a formula
(Q1(a;) AQ2(a;)). However generalization pays off here. By adding the definition
Vz,y (R(z,y) = (Q1(z) A Q2(y))) and replacing the i*" occurrence of the con-
junct by R(z,y){x — a;,y — a;} one definition for all subformula occurrences
suffices.

3.8 Herbrand Interpretations

For propositional logic the existence of a canonical model is straightforward
because the definition of the semantics leads to an effective representation. A
propositional variable can be either true or false. For first-order logic this is no
longer straightforward because an interpretation can assign any non-empty set
to a sort, any function to a function symbol and any relation to a predicate
symbol. A giant step forward towards the mechanization of first-order logic
was the discovery of a canonical model construction by Herbrand. A first-order
formula has a model iff it has such a canonical model which is build out of the
syntax.

For this and the following section I restrict the focus to first-order logic
without equality. Equality is then considered and added to the concepts of this
chapter in Chapters 77, ?7.

Definition 3.8.1 (Herbrand Interpretation). A Herbrand Interpretation (over
Y) is a Y-algebra A so that

1. SA = Tg(X) for every sort S € S
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2. fA:(s1,...,80) = f(51,...,5,) where f € Q, arity(f) = n, s; € Ts,(%)
and f:S; x...x S, = S is the sort declaration for f

3. PAC (Ts, (%) x ... x Ts,, (X)) where P € TI, arity(P) = m and P C
Sy X ... xS, is the sort declaration for P

In other words, values are fixed to be ground terms and functions are fixed
to be the term constructors. Only predicate symbols may be freely interpreted
as relations over ground terms.

Proposition 3.8.2. Every set of ground atoms I uniquely determines a Her-
brand interpretation A4 via

(S15..-58n) € Pq iff P(s1,...,8n) €T

Thus Herbrand interpretations (over ¥) can be identified with sets of X-
ground atoms. A Herbrand interpretation I is called a Herbrand model of ¢, if
I'E¢

Example 3.8.3. Consider the signature ¥ = ({S}, {a,b}, {P,Q}), where a,b
are constants, arity(P) = 1, arity(Q) = 2, and all constants, predicates are
defined over the sort S. Then the following are examples of Herbrand interpre-
tations over X, where for all interpretations S4 = {a, b}.

1 - = @

L: = {P(a)a (a a) Q(bab)}

I+ ={P(a), P(b),Q(a,a),Q(b,b),Q(a,b),Q(b,a)}

Now consider the extension ¥’ of ¥ by one unary function symbol g : S — S.
Then the following are examples of Herbrand interpretations over ¥/, where for
all interpretations S4 = {a,b, g(a), g(b), g(g(a)),...}.

I: =0
I; : ={P(a),Q(a,g(a)),Q(b,b)}
I3 - ={P(a),P(g ( ), P(g(g ( N)s---,Qa,a),Q(b,b),Q(b,g(b)), Q(b,g(g(b))), - - .}

Theorem 3.8.4 (Herbrand). Let N be a set of ¥-clauses. Then N is satisfiable
ifft N has a Herbrand model over ¥ iff ground(X, N) has a Herbrand model
over ¥, where ground(X,N) = {Co | C € N,dom(c) = vars(C), and zo €
Tyort(2)(X) for all z € dom(o)} is the set of ground instances of N.

Example 3.8.5 (Example of a ground(X, N)). Consider ¥’ from Example 3.8.3
and the clause set N = {Q(z,z) V =P(z),~P(z) V P(g(z))}. Then the set of
ground instances ground(X', N) = {

Q(a,a) v —P(a)

Q(b,b) vV =P (b)

Q(g(a),g(a)) vV ~P(g(a))
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is satisfiable. For example by the Herbrand models
Il L= 0
L : :{P(b),Q(b,b),P(g(b)),Q(g(b),g(b)),}

3.9 Orderings

Definition 3.9.1 (Z-Operation Compatible Relation). A binary relation
3 over T(X,X) is called compatible with X-operations, if s 1 s implies
f1,.y8, o ty) O f(t1,...,8, ... ty) for all f € Q and s,s',t; € T(Z, X).

Lemma 3.9.2. A relation 1 is compatible with ¥-operations iff s 3 s" implies
t[s], 3 t[s']p for all s,s',t € T(X,X) and p € pos(t).

In the literature compatible with Y -operations is sometimes also called com-
patible with contexts.

Definition 3.9.3 (Substitution Stable Relation, Rewrite Relation). A binary
relation 3 over T'(X, X) is called stable under substitutions, if s 7 s’ implies
so 1 s'o for all s,s' € T(X,X) and substitutions . A binary relation 1 is
called a rewrite relation, if it is compatible with Y-operations and stable under
substitutions.

Definition 3.9.4 (Lexicographical Path Ordering (LPO)). Let ¥ = (S,Q,1I)
be a signature and let = be a strict partial ordering on operator symbols in (2,
called precedence. The lexicographical path ordering »p, on T'(X,X) is defined
as follows: if s,¢ are terms in Ts(X, X) then s >, ¢ iff

l.t=x€ X,z cvars(s) and s # t or
2. s=f(s1,-.,8n), t = g(t1,...,tm) and
(a) si =ipo t for some i € {1,...,n} or
(b) f > g and s >p, t; for every j € {1,...,m} or
() f =g, s >ipo t; for every j € {1,...,m} and (s1,...,8n)(>1po
)lez(tla"'atm)-
Theorem 3.9.5. 1. The LPO is a rewrite ordering.

2. If the precedence > is total on Q then >, is total on the set of ground
terms T'(X).

3. If Q is finite then >, is well-founded.

Example 3.9.6. Consider the terms g(z), g(y), g(g9(a)), g(b), g(a), b, a. With
respect to the precedence g > b > a the ordering on the ground terms is
g(g(a)) >ipo 9(b) =1po 9(a) =ipo b >ipo a. The terms g(z) and g(y) are not
comparable. Note that the terms g(g(a)), g(b), g(a) are all instances of both

g(x) and g(y).
With respect to the precedence b > a > g the ordering on the ground terms

is g(b) ~1po b >=1po g(g(a)) >lpo g(a) >lpo Q-
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Definition 3.9.7 (The Knuth-Bendix Ordering). Let ¥ = (S, Q,II) be a finite
signature, let > be a strict partial ordering (“precedence”) on Q, let w : QU
X — ]R(T be a weight function, so that the following admissibility conditions are
satisfied:

1. w(z) = wo € R for all variables z € X'; w(c) > wy for all constants ¢ € Q.
2. If w(f) =0 for some f € Q with arity(f) = 1, then f > g for all g € Q.

Then, the weight function w can be extended to terms recursively:

w(f(t, .. tn)) =w(f) + D w(ty)

1<i<n

or alternatively

Sut)y= 3 w@)-#at) + S wlf)-#(F.0)

z€vars(t) feq

where #(a,t) is the number of occurrences of a in .
The Knuth-Bendiz ordering »jp, on T(X, X) induced by = and admissible
w is defined by: s =ppo t iff

1. #(z,s) > #(z,t) for all variables x and w(s) > w(t), or
2. #(x,s) > #(z,t) for all variables z, w(s) = w(t), and

(a) t =z, s = f™(z) for some n > 1, or
(b) s=f(s1,---,8m), t =g(t1,...,tn), and f = g, or

(¢c)s = f(s1,---,8m), t = [f(t1,---,tm), and (s1,-.-,8m)(>kbo
lez(tla"'atm)-

Theorem 3.9.8. 1. The KBO is a rewrite ordering.

2. If the precedence = is total on {2 then =g, is total on the set of ground
terms T'(X).

3. If Q is finite then >, is well-founded.

The LPO ordering as well as the KBO ordering can be extended to atoms in
a straightforward way. The precedence > is extended to II. For LPO atoms are
then compared according to Definition 3.9.4-2. For KBO the weight function w
is also extended to atoms by giving predicates a non-zero positive weight and
then atoms are compared according to terms.

Actually, since atoms are never substituted for variables in first-order logic,
an alternative to the above would be to first compare the predicate symbols and
let > decide the ordering. Only if the atoms share the same predicate symbol,
the argument terms are considered, e.g., in a lexicographic way and are then
compared with respect to KBO or LPO, respectively.
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3.10 Ground Superposition

Propositional clauses and ground clauses are essentially the same, as long as
equational atoms are not considered. This section deals only with ground clauses
and recalls mostly the material from Section 2.6 for first-order ground clauses.
Let N be a set of ground clauses.

Definition 3.10.1 (Clause Ordering). Let < be a total strict rewrite ordering
on terms and atoms. Then < can be lifted to a total ordering < on literals
by its multiset extension <, where a positive literal P(ty,...,t,) is mapped
to the multiset {P(ty,...,t,)} and a negative literal =P(ty,...,t,) to the mul-
tiset {P(t1,...,tn), P(t1,...,tn)}. The ordering <y, is further lifted to a total
ordering on clauses <¢ by considering the multiset extension of <, for clauses.

Proposition 3.10.2 (Properties of the Clause Ordering). (i) The orderings on
literals and clauses are total and well-founded.

(ii) Let C and D be clauses with P(t,...,t,) = |max(C)|, Q(s1,...,5m) =
| max(D)|, where max(C) denotes the maximal literal in C'.

1. fQ(s1,-.-,8m) < P(t1,...,t,) then D <& C.

2. If P(ty,...,tn) = Q(s1,...,8m), P(t1,...,t,) occurs negatively in C but
only positively in D, then D <« C.

Eventually, as I did for propositional logic, I overload < with <7, and <¢. So
if < is applied to literals it denotes <, if it is applied to clauses, it denotes <¢.
Note that < is a total ordering on literals and clauses as well. For superposition,
inferences are restricted to maximal literals with respect to <. For a clause set
N, I define N*¢ ={De N |D<C}.

Definition 3.10.3 (Abstract Redundancy). A ground clause C is redundant
with respect to a ground clause set N if N< |= C.

Tautologies are redundant. Subsumed clauses are redundant if C is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

Note that for finite N, and any C € N redundancy N=¢ = C can
be decided but is as hard as testing unsatisfiability for a clause set

N. So the goal is to invent redundancy notions that can be efficiently
decided and that are useful.

Definition 3.10.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or L. If sel(C') = = P(ty,...,t,) then =P(t1,...,t,)
is called selected in C. If sel(C') = L then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected on a clause, any
superposition inference must be on the selected literal.
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Definition 3.10.5 (Partial Model Construction). Given a clause set N and an
ordering < we can construct a (partial) model Nz for N inductively as follows:

Ne = UD-<C’ op

{P(t1,...,tn)} D =D"VP(t1,...,tn), P(t1,...,t,) strictly maximal, no literal
op = selected in D and Np (= D

1] otherwise
NI = UC’GN 50

Clauses C with §¢ # 0 are called productive.

Proposition 3.10.6. Some properties of the partial model construction.
1. For every D with (C'V =P(t1,...,tn)) < D we have 6p # {P(t1,...,tn)}.
2. If 6¢ = {P(t1,...,tn)} then No Udc = C.

3. If No = D and D < C then for all C' with C < C' we have N¢v |= D
and in particular N7 |= D.

4. There is no clause C with P(t1,...,tn) V P(t1,...,t,) < C such that
dc = {P}.

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N<¢ is of set of clauses from N strictly
smaller than C' with respect to <. Nz, N¢ are Herbrand interpreta-

tions (see Proposition 3.8.2). N7 is the overall (partial) model for N, whereas
N¢ is generated from all clauses from N strictly smaller than C.

Superposition Left (NW{C1VP(t1,...,tn),CaV-P(t1,...,tn)}) =sup
(NU {Cl VP(tl,...,tn),CQ V—lp(tl,...,tn)} U {Ol VCQ})

where (i) P(t1,...,t,) is strictly maximal in Cy V P(ty,...,t,) (ii) no literal in
C1VP(ty,...,t,)is selected (iii) =P(t1, ..., t,) is maximal and no literal selected
in Cy V=P(ty,...,t,), or =P (t1,...,t,) is selected in Cy V =P (t1,...,t,)

Factoring (NW{CV P(ty,...,tn) V P(t1,...,tn)}) =suvp
(NU{CV P(t1,...,tn) VP(t1,...,tn)} U{CV P(t1,...,tn)})
where (i) P(t1,...,tn) is maximal in C'V P(ty,...,t,) V P(t1,...,t,) (il) no
literal is selected in C'V P(t1,...,tn) V P(t1,...,t,)

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

Definition 3.10.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N.
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Examples for specific redundancy rules that can be efficiently decided are
Subsumption (NwW{C1,C5}) =svp (NU{Cy})
provided C; C Cs

E’:‘)‘:Obgy Dele-  \ (o Vv P(t1,...,t0) V=P(t1,...,t)}) =sup (N)

Condensation (Nw{Ci,VLVL}) =sup (NU{C,VL})
Subsumption
Resolution (Nw{C1VL,Cyv-L}) =sup (NU{CLVL,C})

where Ol g CQ

Proposition 3.10.8. All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with respect to the
kept or added clauses.

Theorem 3.10.9. Let N be a, possibly countably infinite, set of ground clauses.
If N is saturated up to redundancy and L ¢ N then N is satisfiable and N7 |=
N.

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N = D,
(ii) L ¢ N and (iii) Nz & N. Then there is a minimal, with respect to <, clause
CV L € N such that Nz £ C'V L and L is a selected literal in C'V L or no literal
in CV L is selected and L is maximal. This clause must exist because L ¢ N.

The clause C'V L is not redundant. For otherwise, NX¢VL |= C' Vv L and
hence Nz |= C'V L, because N7 = N=VE 4 contradiction.

I distinguish the case L is a positive and no literal selected in C'V L or L
is a negative literal. Firstly, assume L is positive, i.e., L = P(t1,...,t,) for
some ground atom P(t1,...,t,). Now if P(t1,...,t,) is strictly maximal in
CV P(ty,...,t,) then actually 6cvp = {P(t1,...,t,)} and hence Nz E CV P,
a contradiction. So P(t1,...,t,) is not strictly maximal. But then actually C'V
P(ty,...,t,) has the form C]VP(t1,...,t,)VP(t1,...,t,) and Factoring derives
CiVP(t1,...,t,) where (C{VP(t1,...,tn)) < (CIVP(t1,...,tn)VP(t1,...,tn)).
Now Cy V P(t1,...,t,) is not redundant, strictly smaller than C'V L, we have
CiVP(ti,...,tp) € N and Nz £ C{V P(t1,...,t,), a contradiction against the
choice that C' vV L is minimal.

Secondly, let us assume L is negative, i.e., L = —P(ty,...,t,) for some
ground atom P(ti,...,t,). Then, since Nz [ C V =P(t1,...,t,) we know
P(t1,...,t,) € Nz. So there is a clause D V P(t1,...,t,) € N where
ODVP(tr,.tn) = 1P(t1,...,tn)} and P(t1,...,t,) is strictly maximal in D V
P(t1,...,tp) and (D V P(t1,...,tn)) < (CV =P(t1,...,tn)). So Superposition
Left derives C'V D where (C'V D) < (C'V =P(t1,...,t,)). The derived clause
C' V D cannot be redundant, because for otherwise either N<PVFP(t1.tn) 1=
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DV P(t1,...,t,) or N3XCV=Ptitn) |m O =P(ty,...,t,). So CV D € N and
Nz £ CV D, a contradiction against the choice that C'V L is the minimal false
clause. g

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

Theorem 3.10.10 (Compactness of First-Order Logic). Let N be a, possibly
infinite, set of first-order logic ground clauses. Then N is unsatisfiable iff there
is a finite subset N' C N such that N’ is unsatisfiable.

Proof. If N is unsatisfiable, saturation via superposition generates L. So there
is an i such that N =i;p N’ and L € N'. The clause L is the result of at
most ¢ many superposition inferences, reductions on clauses {C1,...,Cp} C N.
Superposition is sound, so {C1, ..., C,} is a finite, unsatisfiable subset of N. O

Corollary 3.10.11 (Compactness of First-Order Logic: Classical). A set N of
clauses is satisfiable iff all finite subsets of N are satisfiable

Theorem 3.10.12 (Soundness and Completeness of Ground Superposition). A
first-order X-sentence ¢ is valid iff there exists a ground superposition refutation
for ground(X, cnf(—¢)).

Proof. A first-order sentence ¢ is valid iff ¢ is unsatisfiable iff cnf(—¢) is unsat-
isfiable iff ground(X, enf(—¢)) is unsatisfiable iff superposition provides a refu-
tation of ground(X, cnf(—¢)). O

Theorem 3.10.13 (Semi-Decidability of First-Order Logic by Ground Super-
position). If a first-order Y-sentence ¢ is valid then a ground superposition
refutation can be computed.

Proof. In a fair way enumerate ground(X, cnf(—¢)) and perform superposition
inference steps. The enumeration can, e.g., be done by considering Herbrand
terms of increasing size. O

Example 3.10.14 (Ground Superposition). Consider the below clauses 1-4
and superposition refutation with respect a KBO with precedence P = ) >
g = f > ¢ > b > a where the weight function w returns 1 for all signature
symbols. Maximal literals are marked with a *.

L. =P(f(c))* vV =P(f(c))" vV Q(b) (Input)
2. P(f(e)*VQ(b) (Input)
3. =P(g(b,e))* V-Q(b) (Input)
4. P(g(b,c))* (Input)
5. =P(f(c))" v Q(b) (Cond(1))
6. Q)" VQ(b)” (Sup(5,2)))
7. Q(b)* (Fact(6))
8. —Q(b)* (Sup(3,4))
10. L (Sup(8,7))
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Note that clause 5 cannot be derived by Factoring whereas clause 7 can also be
derived by Condensation. Clause 8 is also the result of a Subsumption Resolution
application to clauses 3, 4.

Theorem 3.10.15 (Craig Theorem [14]). Let ¢ and ¢ be two propositional
formulas so that ¢ = ¢. Then there exists a formula x (called the interpolant
for ¢ |= 1), so that x contains only propositional variables occurring both in ¢
and in ¢ so that ¢ = x and x |= 9.

Proof. Translate ¢ and —¢ into CNF. let N and M, respectively, denote the
resulting clause set. Choose an atom ordering > for which the propositional
variables that occur in ¢ but not in ¢ are maximal. Saturate N into N* w.r.t.
Sup?,, with an empty selection function sel. Then saturate N* UM w.r.t. Sup?,,
to derive L. As N* is already saturated, due to the ordering restrictions only
inferences need to be considered where premises, if they are from N*, only
contain symbols that also occur in 4. The conjunction of these premises is an
interpolant y. The theorem also holds for first-order formulas. For universal for-
mulas the above proof can be easily extended. In the general case, a proof based
on superposition technology is more complicated because of Skolemization. O

3.11 First-Order Superposition with Selection

The completeness proof of ground superposition (Section 3.10) talks about
(strictly) maximal literals of ground clauses. The non-ground calculus considers
those literals that correspond to (strictly) maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.10.1 where clauses
with variables are projected to their ground instances for ordering computations.

Definition 3.11.1 (Maximal Literal). A literal L is called [strictly] mazimal
in a clause C if and only if there exists a grounding substitution ¢ so that Lo
is [strictly] maximal in Co (i.e., if for no other L' in C: Lo < L' [Lo X L'0]).

Superposition Left (NW{C1VP(t1,...,tn),C2V-P(s1,...,80)}) =sup
(NU {Cl \/P(tl,...,tn),cg \/"P(Sl,...,Sn)} U {(Cl \/02)0'})

where (i) P(t1,...,t,)o is strictly maximal in (C; V P(t1,...,tn))o (il) no
literal in Cy V P(ty,...,t,) is selected (iii) =P(t1,...,ty)o is maximal and
no literal selected in (C2 V =P(t1,...,tn))o, or =P(t1,...,t,) is selected in
Cy V =P(t1,...,t,) (iv) o is the mgu of P(t1,...,t,) and P(s1,...,Sp)

Factoring (NW{CV P(t1,...,tn) V P(t1,...,tn)}) =suvp
(NU{CV P(t1,...,tn) VP(t1,...,tn)} U{(CV P(t1,...,tn))0})

where (i) P(t1,...,tn)o is maximal in (C'V P(t1,...,tn) V P(t1,...,tn))0
(ii) no literal is selected in C'V P(ty,...,tn) V P(t1,...,tpn) (iil) o is the mgu of
P(ty,...,t,) and P(s1,...,$pn)
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Note that the above inference rules Superpositions Left and Factoring are
generalizations of their respective counterparts from Section 3.10. On ground
clauses they coincide. Therefore, we can safely overload them in the sequel.

Definition 3.11.2 (Abstract Redundancy). A clause C is redundant with
respect to a clause set N if for all ground instances C'c where are clauses
{C1,...,Cp} C N with ground instances Cy7,...,C,7, such that C;7; < Co
for all i and Ci1y,...,Chm E Co.

Definition 3.11.3 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N.

In contrast to the ground case, the above abstract notion of redundancy is
not effective, i.e., it is undecidable for some clause C' whether it is redundant, in
general. Nevertheless, the concrete redundancy notions from Section 3.10 carry
over to the non-ground case. Let dup be a function from clauses to clauses that
removes duplicate literals, i.e., dup(C) = C' where C' C C, C' does not contain
any duplicate literals, and for each L € C also L € C".

Subsumption (NW{C1,Cs}) =sup (NU{Cy})
provided Cio C Cs for some o

E?a“t"logy Dele- NV P(t1,....t)) V=P(th,... tn)}) =sup (N)
10on

Condensation (N"U{CiVLVLY}) =sup (NU{dup((Cy VLV L)o)})
provided Lo = L' and dup((Cy V LV L')o) subsumes Cy V LV L' for some o

Subsumption ,
Resolution (NW{CiVL,CyVL'}) =sup (NU{C1VL,Cs})

where Lo = =L’ and Cio C Cs for some o

Lemma 3.11.4. All reduction rules are instances of the abstract redundancy
criterion

Lemma 3.11.5 (Subsumption is NP-complete). Subsumption is NP-complete.

Proof. Let Cy subsume C5 with substitution o Subsumption is in NP because
the size of o is bound by the size of Cs and the subset relation can be checked
in time at most quadratic in the size of C; and Cs.

Propositional SAT can be reduced as follows. Assume a 3-SAT clause set
N. Consider a 3-place predicate R and a unary function g and a mapping from
propositional variables P to first order variables zp. ... O

Lemma 3.11.6 (Lifting). Let DV L and C'V L' be variable-disjoint clauses and
o a grounding substitution for C'V L and D V L'. If there is a superposition left
inference

(NW{(DV L)o,(CV L"Yo}) =sup (NU{(DV L)o,(CV Lo} U{DoV Cc})
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and if sel((D Vv L)o) = sel((D V L))o, sel((C vV L")o) = sel((C' vV L'))o , then
there exists a mgu 7 such that

(NW{DVL,CVLY}) =sup (NU{DVL,CVL}U{(DVC)T}).

Let C'V LV L' be variable-disjoint clauses and ¢ a grounding substitution
for C vV LV L' If there is a factoring inference

(NW{(CVLVLY}) =sup (NU{(CVLVL)Y}U{(CVL)})

and if sel((C'V LV L")o) =sel((CV LV L))o , then there exists a mgu 7 such
that
(NYU{CVLVLY}) =sup (NU{CVLVL}YU{(CVL)T})

Note that in the above lemma the clause DoV Co is an instance of the clause
(D V C)7 The reduction rules cannot be lifted in the same way as the following
example shows.

Example 3.11.7 (First-Order Reductions are not Liftable). Consider the two
clauses P(z) V Q(z), P(g(y)) and grounding substitution {z — g(a),y — a}.
Then P(g(y))o subsumes (P(z)V Q(x))o but P(g(y)) does not subsume P(x)V
Q(z). For all other reduction rules similar examples can be constructed.

Lemma 3.11.8 (Soundness and Completeness). Superposition is sound and
complete.

Proof. Soundness is obvious. For completeness, Theorem 3.10.12 proves the
ground case. Now by applying Lemma 3.11.6 to this proof it can be lifted to the
first-order level. O

There are questions left open by Lemma 3.11.8. It just says that a ground
refutation can be lifted to a first-order refutation. But what about abstract
redundancy, Definition 3.11.27 Can first-order redundant clauses be deleted
without harming completeness? And what about the ground model operator
with respect to clause sets NV saturated on the first order level. Is in this case
ground(X, N)7 a model? The next two lemmas answer these questions positively.

Lemma 3.11.9 (Redundant Clauses are Obsolete). If a clause set N is unsat-
isfiable, then there is a derivation N =§yp N’ such that L € N’ and no clause
in the derivation of L is redundant.

Proof. If N is unsatisfiable then there is a ground superposition refutation of
ground(X, N) such that no ground clause in the refutation is redundant. Now
according to Lemma 3.11.8 this proof can be lifted to the first-order level. Now
assume some clause C in the first-order proof is redundant that is the lifting of
some clause C'o from the ground proof with respect to a grounding substitution
o. The clause C' is redundant by Definition 3.11.2 if all its ground instances are,
in particular, Co. But this contradicts the fact that the lifted ground proof does
not contain redundant clauses. O
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Lemma 3.11.10 (Model Property). If N is a saturated clause set and L ¢ N
then ground(X, N)z = N.

Proof. As usual we assume that selection on the ground and respective non-
ground clauses is identical. Assume ground(X, N)z = N. Then there is a min-
imal ground clause Co, C # 1, C € N such that ground(Z,N)z £ Co.
Note that Co is not redundant as for otherwise ground(X,N)z | Co. So
ground(X, N) is not saturated. If Co is productive, i.e., Co = (C' V L)o such
that L is positive, Lo strictly maximal in (C' V L)o then Lo € ground(X, N)z
and hence ground(X, N)z | Co contradicting ground(X, N)z (£ Co.

If Co = (C'V LV Lo such that L is positive, Lo maximal in (C' VLV L")o
then, because N is saturated, there is a clause (C' V L)T € N such that (C' Vv
L)ro = (C'VL)o. Now (C'V L) is not redundant, ground(X, N)z %= (C'V L),
contradicting the minimal choice of Co.

If Co = (C'VL)o such that L is selected, or negative and maximal then there
is a clause (D'VL') € N and grounding substitution p, such that L'p is a strictly
maximal positive literal in (D' V L')p, L'p € ground(X, N)z and L'p = —Lo.
Again, since N is saturated, there is variable disjoint clause (C' VvV D")r € N
for some unifier 7, (C' V D')rop < Co, and ground(X, N)z £ (C' vV D')rop
contradicting the minimal choice of Co. O

Definition 3.11.11 (Persistent Clause). Let Ny =sup N1 =sup ... be a,
possibly infinite, superposition derivation. A clause C'is called persistent in this
derivation if C' € N; for some 4 and for all j > 4 also C' € IV;.

Definition 3.11.12 (Fair Derivation). A derivation Ny =sup N1 =sup -. - is
called fair if for any persistent clause C' € N; where factoring is applicable to
C, there is a j such that the factor of C' € N; or L € N;. If {C,D} C N; are
persistent clauses such that superposition left is applicable to C'; D then the
superposition left result is also in N; for some j or L € Nj.

Theorem 3.11.13 (Dynamic Superposition Completeness). If N is unsatisfi-
able and N = Ny =sup N1 =sup -.. is a fair derivation, then there is L € N;
for some j.

Proof. If N is unsatisfiable, then by Lemma 3.11.8 there is a derivation of L
by superposition. Furthermore, no clause contributing to the derivation of L is
redundant (Lemma 3.11.9). So all clauses in the derivation of L are persistent.
The derivation No =sup N1 =sup ... is fair, hence L € N; for some j. O

Lemma 3.11.14. Let red(V) be all clauses that are redundant with respect to
the clauses in N and N, M be clause sets. Then

1. if N C M then red(N) C red(M)
2. if M Cred(N) then red(N) C red(N \ M)

It follows that redundancy is preserved when, during a theorem proving
process, new clauses are added (or derived) or redundant clauses are deleted.
Furthermore, red(N) may include clauses that are not in N.
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Algorithm 7: SupProver(N)

Input : A set of clauses N.
Output: A saturated set of clauses N’, equivalent to V.

1 WO := ()

2 US .= N;

3 while (US # 0 and L ¢ US) do

4 Given:= pick a clause from US;

5 WO := WO U {Given};

6 New := SupLeft(WO,Given) U Fact(Given);
7 while (New # () do

8 Given:= pick a clause from New;

9 if (/TautDel(Given)) then

10 if (/SubDel(Given,WO UUS)) then
11 Given:= Cond(Given);

12 Given:= SubRes(Given,WO);

13 WO:= SubDel(WO,Given);

14 US:= SubDel(US,Given);

15 New:= New U SubRes(WO UUS,Given);
16 US:= US U {Given };

17

18

19 end

20 end

21 return WQO;




