
Chapter 3

First-Order Logi

First-Order logi is a generalization of propositional logi. Propositional logi

an represent propositions, whereas �rst-order logi an represent individuals

and propositions about individuals. For example, in propositional logi from

\Sorates is a man" and \If Sorates is a man then Sorates is mortal" the

onlusion \Sorates is mortal" an be drawn. In �rst-order logi this an be

represented muh more �ne-grained. From \Sorates is a man" and \All man

are mortal" the onlusion \Sorates is mortal" an be drawn.

This hapter introdues �rst-order logi with equality. However, all aluli

presented here, namely Tableaux (Setion 3.6) and Superposition (Setion ??)

are presented only for its restrition without equality. Purely equational logi

and �rst-order logi with equality are presented separately in Chapter ?? and

Chapter ??, respetively.

3.1 Syntax

De�nition 3.1.1 (Many-Sorted Signature). A many-sorted signature � =

(S;
;�) is a pair onsisting of a �nite non-empty set S of sort symbols, a

non-empty set
 of operator symbols (also alled funtion symbols) over S and

a set � of prediate symbols. Every operator symbol f 2
 has a unique sort

delaration f : S

1

� : : :�S

n

! S, indiating the sorts of arguments (also alled

domain sorts) and the range sort of f , respetively, for some S

1

; : : : ; S

n

; S 2 S

where n � 0 is alled the arity of f , also denoted with arity(f). An operator

symbol f 2
 with arity 0 is alled a onstant. Every prediate symbol P 2 �

has a unique sort delaration P � S

1

� : : : � S

n

. A prediate symbol P 2 �

with arity 0 is alled a propositional variable. For every sort S 2 S there must

be at least one onstant a 2
 with range sort S.

In addition to the signature �, a variable set X , disjoint from
 is assumed, so

that for every sort S 2 S there exists a ountably in�nite subset of X onsisting

of variables of the sort S. A variable x of sort S is denoted by x

S

.

De�nition 3.1.2 (Term). Given a signature � = (S;
;�), a sort S 2 S and

93

94 CHAPTER 3. FIRST-ORDER LOGIC

a variable set X , the set T

S

(�;X) of all terms of sort S is reursively de�ned

by (i) x

S

2 T

S

(�;X) if x

S

2 X , (ii) f(t

1

; : : : ; t

n

) 2 T

S

(�;X) if f 2
 and

f : S

1

� : : :� S

n

! S and t

i

2 T

S

i

(�;X) for every i 2 f1; : : : ; ng.

The sort of a term t is denoted by sort(t), i.e., if t 2 T

S

(�;X) then sort(t) =

S. A term not ontaining a variable is alled ground.

For the sake of simpliity it is often written: T (�;X) for

S

S2S

T

S

(�;X), the

set of all terms, T

S

(�) for the set of all ground terms of sort S 2 S, and T (�)

for

S

S2S

T

S

(�), the set of all ground terms over �.

De�nition 3.1.3 (Equation, Atom, Literal). If s; t 2 T

S

(�;X) then s � t is an

equation over the signature �. Any equation is an atom (also alled atomi for-

mula) as well as every P (t

1

; : : : ; t

n

) where t

i

2 T

S

i

(�;X) for every i 2 f1; : : : ; ng

and P 2 �, arity(P) = n, P � S

1

� : : : � S

n

. An atom or its negation of an

atom is alled a literal.

The literal s

.

� t denotes either s � t or t � s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal :(s � t) is written

as s 6� t.

C

Non equational atoms an be transformed into equations: For this a

given signature is extended for every prediate symbol P as follows:

(i) add a distint sort B to S, (ii) introdue a fresh onstant true of

the sort B to
, (iii) for every prediate P , P � S

1

� : : : � S

n

add a fresh

funtion f

P

: S

1

; : : : ; S

n

! B to
, and (iv) enode every atom P (t

1

; : : : ; t

n

) as

a funtion f

P

: S

1

; : : : ; S

n

! B. Thus, prediate atoms are turned into equations

f

P

(t

1

; : : : ; t

n

) � true. are overloaded here.

De�nition 3.1.4 (Formulas). The set FOL(�;X) of many-sorted �rst-order

formulas with equality over the signature � is de�ned as follows for formulas

�; 2 F

�

(X) and a variable x 2 X :

FOL(�;X) Comment

? falsum

> verum

P (t

1

; : : : ; t

n

); s � t atom

(:�) negation

(� ^) onjuntion

(� _) disjuntion

(�!) impliation

(�$) equivalene

8x:� universal quanti�ation

9x:� existential quanti�ation

A onsequene of the above de�nition is that PROP(�) � FOL(�

0

;X) if

the propositional variables of � are ontained in �

0

as prediates of arity 0. A

formula not ontaining a quanti�er is alled quanti�er-free.

3.1. SYNTAX 95

De�nition 3.1.5 (Positions). It follows from the de�nitions of terms and for-

mulas that they have tree-like struture. For referring to a ertain subtree,

alled subterm or subformula, respetively, sequenes of natural numbers are

used, alled positions (as introdued in Chapter 2.1.3). The set of positions of

a term, formula is indutively de�ned by:

pos(x) := f�g if x 2 X

pos(�) := f�g if � 2 f>;?g

pos(:�) := f�g [f1p j p 2 pos(�)g

pos(� Æ) := f�g [f1p j p 2 pos(�)g [f2p j p 2 pos()g

pos(s � t) := f�g [f1p j p 2 pos(s)g [f2p j p 2 pos(t)g

pos(f(t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(P (t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(8x:�) := f�g [f1p j p 2 pos(�)g

pos(9x:�) := f�g [f1p j p 2 pos(�)g

where Æ 2 f^;_;!;$g and t

i

2 T (�;X) for all i 2 f1; : : : ; ng.

The pre�x orders (above, stritly above and parallel), the seletion and re-

plaement with respet to positions are de�ned exatly as in Chapter 2.1.3.

An term t (formula �) is said to ontain another term s (formula) if t

p

= s

(�

p

=). It is alled a strit subexpression if p 6= �. The term t (formula �)

is alled an immediate subexpression of s (formula) if jpj = 1. For terms a

subexpression is alled a subterm and for formulas a subformula, respetively.

The size of a term t (formula �), written jtj (j�j), is the ardinality of pos(t),

i.e., jtj := j pos(t)j (j�j := j pos(�)j). The depth of a term, formula is the maximal

length of a position in the term, formula: depth(t) := maxfjpj j p 2 pos(t)g

(depth(�) := maxfjpj j p 2 pos(�)g). The set of all variables ourring in a

term t (formula �) is denoted by vars(t) (vars(phi)) and formally de�ned as

vars(t) := fx 2 X j x = tj

p

; p 2 pos(t)g (vars(�) := fx 2 X j x = �j

p

; p 2

pos(�)g). A term t (formula �) is ground if vars(t) = ; (vars(�) = ;).

Note that vars(8x:a � b) = ; where a; b are onstants. This is justi�ed by the

fat that the formula does not depend on the quanti�er, see semantis below. The

set of free variables of a formula � (term t) is given by fvars(�; ;) (fvars(t; ;)) and

reursively de�ned by fvars(

1

Æ

2

; B) := fvars(

1

; B)[fvars(

2

; B) where Æ 2

f^;_;!;$g, fvars(8x: ;B) := fvars(;B[fxg), fvars(9x: ;B) := fvars(;B[

fxg), fvars(: ;B) := fvars(;B), fvars(L;B) := vars() n B (fvars(t; B) :=

vars(t) nB. For fvars(�; ;) I also write fvars(�)

In 8x:� (9x:�) the formula � is alled the sope of the quanti�er. An o-

urrene q of a variable x in a formula � (�j

q

= x) is alled bound if there is

some p < q with �j

p

= 8x:�

0

or �j

p

= 9x:�

0

. Any other ourrene of a vari-

able is alled free. A formula not ontaining a free ourrene of a variable is

alled losed. If fx

1

; : : : ; x

n

g are the variables freely ourring in a formula

� then 8x

1

; : : : ; x

n

:� and 9x

1

; : : : ; x

n

:� (abbreviations for 8x

1

:8x

2

: : :8x

n

:�,

9x

1

:8x

2

: : :8x

n

:�, respetively) are the universal and the existential losure of

�.

96 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.1.6. For the literal :P (f(x; g(a))) the atom P (f(x; g(a))) is an

immediate subformula of ourring at position 1. The terms x and g(a) are

strit subterms ourring at positions 111 and 112, respetively. The for-

mula :P (f(x; g(a)))[b℄

111

= :P (f(b; g(a))) is obtained by replaing x with b.

pos(:P (f(x; g(a)))) = f�; 1; 11; 111; 112; 1121gmeaning its size is 6, its depth 4

and vars(:P (f(x; g(a)))) = fxg.

The polarity of a subformula = �j

p

at position p is pol(�; p) where pol is

reursively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

pol(P (t

1

; : : : ; t

n

); p) := 1

pol(t � s; p) := 1

pol(8x:�; 1p) := pol(�; p)

pol(9x:�; 1p) := pol(�; p)

3.2 Semantis

De�nition 3.2.1 (�-algebra). Let � = (S;
;�) be a signature with set of

sorts S, operator set
 and prediate set �. A �-algebra A, also alled �-

interpretation, is a mapping that assigns (i) a non-empty arrier set S

A

to every

sort S 2 S, so that (S

1

)

A

\(S

2

)

A

= ; for any distint sorts S

1

; S

2

2 S, (ii) a total

funtion f

A

: (S

1

)

A

� : : :�(S

n

)

A

! (S)

A

to every operator f 2
, arity(f) = n

where f : S

1

� : : : � S

n

! S, (iii) a relation P

A

� ((S

1

)

A

� : : : � (S

m

)

A

) to

every prediate symbol P 2 �, arity(P) = m. (iv) the equality relation beomes

�

A

= f(e; e) j e 2 U

A

g where the set U

A

:=

S

S2S

(S)

A

is alled the universe of

A.

A (variable) assignment, also alled a valuation for an algebraA is a funtion

� : X ! U

A

so that �(x) 2 S

A

for every variable x 2 X , where S = sort(x). A

modi�ation �[x 7! e℄ of an assignment � at a variable x 2 X , where e 2 S

A

and S = sort(x), is the assignment de�ned as follows:

�[x 7! e℄(y) =

(

e if x = y

�(y) otherwise.

Informally speaking, the assignment �[x 7! e℄ is idential to � for every variable

exept x, whih is mapped by �[x 7! e℄ to e.

The homomorphi extension A(�) of � onto terms is a mapping T (�;X)!

U

A

de�ned as (i) A(�)(x) = �(x), where x 2 X and (ii) A(�)(f(t

1

; : : : ; t

n

)) =

f

A

(A(�)(t

1

); : : : ;A(�)(t

n

)), where f 2
, arity(f) = n.

3.2. SEMANTICS 97

Given a term t 2 T (�;X), the value A(�)(t) is alled the interpretation of

t under A and �. If the term t is ground, the value A(�)(t) does not depend

on a partiular hoie of �, for whih reason the interpretation of t under A is

denoted by A(t).

An algebra A is alled term-generated, if every element e of the universe U

A

of A is the image of some ground term t, i.e., A(t) = e.

De�nition 3.2.2 (Semantis). An algebra A and an assignment � are extended

to formulas � 2 FOL(�;X) by

A(�)(?) := 0

A(�)(>) := 1

A(�)(s � t) := 1 if A(�)(s) = A(�)(t) and 0 otherwise

A(�)(P (t

1

; : : : ; t

n

)) := 1 if (A(�)(t

1

); : : : ;A(�)(t

n

)) 2 P

A

and 0 otherwise

A(�)(:�) := 1�A(�)(�)

A(�)(� ^) := min(fA(�)(�);A(�)()g)

A(�)(� _) := max(fA(�)(�);A(�)()g)

A(�)(� !) := max(f(1�A(�)(�));A(�)()g)

A(�)(� $) := if A(�)(�) = A(�)() then 1 else 0

A(�)(9x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for some e 2 S

A

and 0 otherwise

A(�)(8x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for all e 2 S

A

and 0 otherwise

A formula � is alled satis�able by A under � (or valid in A under �) if

A; � j= �; in this ase, � is also alled onsistent ; satis�able by A if A; � j= �

for some assignment �; satis�able if A; � j= � for some algebra A and some

assignment �; valid in A, written A j= �, if A; � j= � for any assignment �; in

this ase, A is alled a model of �; valid, written j= �, if A; � j= � for any algebra

A and any assignment �; in this ase, � is also alled a tautology ; unsatis�able

if A; � 6j= � for any algebra A and any assignment �; in this ase � is also alled

inonsistent.

Note that ? is inonsistent whereas > is valid. If � is a sentene that is

a formula not ontaining a free variable, it is valid in A if and only if it is

satis�able by A. This means the truth of a sentene does not depend on the

hoie of an assignment.

Given two formulas � and , � entails , or is a onsequene of �, written

� j= , if for any algebra A and assignment �, if A; � j= � then A; � j= . The

formulas � and are alled equivalent, written � j=j , if � j= and j= �. Two

formulas � and are alled equisatis�able, if � is satis�able i� is satis�able (not

neessarily in the same models). Note that if � and are equivalent then they

are equisatis�able, but not the other way around. The notions of \entailment",

\equivalene" and \equisatis�ability" are naturally extended to sets of formulas,

that are treated as onjuntions of single formulas. Thus, given formula setsM

1

and M

2

, the set M

1

entails M

2

, written M

1

j= M

2

, if for any algebra A and

assignment �, if A; � j= � for every � 2M

1

then A; � j= for every 2M

2

. The

sets M

1

and M

2

are equivalent, written M

1

j=jM

2

, if M

1

j=M

2

and M

2

j=M

1

.

Given an arbitrary formula � and formula set M , M j= � is written to denote

M j= f�g; analogously, � j=M stands for f�g j=M .

98 CHAPTER 3. FIRST-ORDER LOGIC

Sine lauses are impliitly universally quanti�ed disjuntions of literals, a

lause C is satis�able by an algebra A if for every assignment � there is a literal

L 2 C with A; � j= L. Note that if C = fL

1

; : : : ; L

k

g is a ground lause, i.e.,

every L

i

is a ground literal, then A j= C if and only if there is a literal L

j

in C

so that A j= L

j

. A lause set N is satis�able i� all lauses C 2 N are satis�able

by the same algebra A. Aordingly, if N and M are two lause sets, N j= M

i� every model A of N is also a model of M .

3.3 Equality

The equality prediate is build into the �rst-order language in Setion 3.1 and

not part of the signature. It is a �rst lass itizen. This is the ase although

it an be atually axiomatized in the language. The motivation is that �rstly,

many real world problems naturally ontain equations. They are a means to

de�ne funtions. Then prediates over terms model properties of the funtions.

Seondly, without speial treatment in a alulus, it is almost impossible to

automatially prove non-trivial properties of a formula ontaining equations.

In this setion I �rstly show that any formula an be transformed into a

formula where all atoms are equations. Seondly, that any formula ontaining

equations an be transformed into a formula where the equality prediate is

replaed by a fresh prediate together with some axioms. In the �rst ase the

respetive lause sets are equivalent, in the seond ase the transformation is

satis�ability preserving. For the replaement of any prediate R by equations

over a fresh funtion f

R

we assume an additional fresh sort Bool with two fresh

onstants true and false.

InjEq �[R(t

1;1

; : : : ; t

1;n

)℄

p

1

: : : [R(t

m;1

; : : : ; t

m;n

)℄

p

m

)

IE

�[f

R

(t

1;1

; : : : ; t

1;n

) �

true℄

p

1

: : : [f

R

(t

m;1

; : : : ; t

m;n

) � true℄

p

m

provided R is a prediate ourring in �, fp

1

; : : : ; p

m

g are all positions of atoms

with prediate R in � and f

R

is new with appropriate sorting

Proposition 3.3.1. Let �)

�

IE

�

0

then � is satis�able (valid) i� �

0

is satis�able

(valid).

Proof. (Sketh) The basi proof idea is to establish the relation (t

A

1

; : : : ; t

A

n

) 2

R

A

i� f

A

R

(t

A

1

; : : : ; t

A

n

) = true

A

. Furthermore, the sort of true is fresh to � and

the equations f

R

(t

1

; : : : ; t

n

) � true do not interfere with any term t

i

beause

the f

R

are all fresh and only our on top level of the equations.

When removing equality from a formula it needs to be axiomatized. For

simpliity, I assume here that the onsidered formula � is one-sorted, i.e., there

is only one sort ourring for funtions, relations in �. The extension to formulas

with many sorts is straightforward and disussed below.

RemEq �[l

1

� r

1

℄

p

1

: : : [l

m

� r

m

℄

p

m

)

RE

�[E(l

1

; r

1

)℄

p

1

: : : [E(l

m

; r

m

)℄

p

m

^

def(�;E)

3.4. SUBSTITUTION AND UNIFIER 99

provided fp

1

; : : : ; p

m

g are all positions of equations l

i

= r

i

in � and E is a new

binary prediate

The formula def(�;E) is the axiomatization of equality for � and it onsists

of a onjuntion of the equivalene relation axioms for E

8x:E(x; x)

8x; y:(E(x; y)! E(y; x))

8x; y; z:((E(x; y) ^ E(x; z))! E(x; z))

plus the ongruene axioms for E for every n-ary funtion symbol f

8x

1

; y

1

; : : : ; x

n

; y

n

:((E(x

1

; y

1

) ^ : : : ^E(x

n

; y

n

))! E(f(x

1

; : : : ; x

n

); f(y

1

; : : : ; y

n

)))

plus the ongruene axioms for E for every m-ary prediate symbol P

8x

1

; y

1

; : : : ; x

m

; y

m

:((E(x

1

; y

1

) ^ : : : ^ E(x

m

; y

m

) ^ P (x

1

; : : : ; x

m

))! P (y

1

; : : : ; y

m

)

Proposition 3.3.2. Let �)

RE

�

0

then � is satis�able i� �

0

is satis�able.

Proof. (Sketh) The identity on an algebra (see De�nition 3.2.2) is a ongruene

relation proving the diretion from left to right. The diretion from right to left

is more involved.

Note that)

RE

is not validity preserving. Consider the simple example for-

mula a � a whih is valid for any onstant a. Its translation E(a; a) ^ def(a �

a;E) is not valid, e.g., onsider an algebra with E

A

= ;.

Now in ase � has many di�erent sorts then for eah sort S one new fresh

prediate E

S

is needed for the translation. For eah of these prediates equiv-

alene relation and ongruene axioms need to be generated where for every

funtion f only one axiom using E

S

is needed, where S is the range sort of S.

Similar for the domain sorts of f and aordingly for prediates.

3.4 Substitution and Uni�er

De�nition 3.4.1 (Substitution). A substitution is a mapping � : X ! T (�;X)

so that

1. �(x) 6= x for only �nitely many variables x and

2. sort(x) = sort(t) for every variable x 2 X that is mapped to a term

t 2 T

S

(�;X).

The appliation �(x) of a substitution � to a variable x is often written in

post�x notation as x�. The variable set dom(�) := fx 2 X j x� 6= xg is alled

the domain of �. The term set odom(�) := fx� j x 2 dom(�)g is alled the

odomain of �. From the above de�nition of substitution it follows that dom(�)

is �nite for any substitution �. The omposition of two substitutions � and �

is written as a juxtaposition �� , i.e., t�� = (t�)� . A substitution � is alled

idempotent if �� = �. � is idempotent i� dom(�) \ vars(odom(�)) = ;.

Substitutions are often written as fx

1

7! t

1

; : : : ; x

n

7! t

n

g if dom(�) =

fx

1

; : : : ; x

n

g and x

i

� = t

i

for every i 2 f1; : : : ; ng. The modi�ationof a substi-

tution � at a variable x is de�ned as follows:

100 CHAPTER 3. FIRST-ORDER LOGIC

�[x 7! t℄(y) =

�

t if y = x

�(y) otherwise

A substitution � is identi�ed with its extension to expression and de�ned as

following:

1. ?� = ?,

2. >� = >,

3. (f(t

1

; : : : ; t

n

))� = f(t

1

�; : : : ; t

n

�),

4. (P (t

1

; : : : ; t

n

))� = P (t

1

�; : : : ; t

n

�),

5. (s � t)� = (s� � t�),

6. (:�)� = :(��),

7. (� Æ)� = �� Æ � where Æ 2 f_;^g,

8. (Qx�)� = Qz(��[x 7! z℄) where Q 2 f8; 9g, z and x are of the same sort

and z is a fresh variable.

The result e� of applying a substitution � to an expression e is alled an

instane of e. The substitution � is alled ground if it maps every domain

variable to a ground term. If the appliation of a substitution � to an expression

e produes a ground expression e� then e� is alled ground instane of e. A

ground substitution � is alled grounding for an expression e if e� is ground. A

substitution � is alled variable renaming if im(�) � X and for any x; y 2 X , if

x 6= y then x� 6= y�.

De�nition 3.4.2 (Uni�er). Two terms s and t are said to be uni�able if there

exists a substitution � so that s� = t�, the substitution � is then alled a uni�er

of s and t. The uni�er � is alled most general uni�er, written � = mgu(s; t), if

any other uni�er � of s and t an be represented as � = ��

0

, for some substitution

�

0

.

3.5 Uni�ation Caluli

The �rst alulus is the naive standard uni�ation alulus that is typially

found in the (old) literature on automated reasoning. A state of the naive stan-

dard uni�ation alulus is a set of equations E or ?, where ? denotes that

no uni�er exists. The set E is also alled a uni�ation problem. The start state

for heking whether two terms s, t with sort(s) = sort(t) (or atoms A, B) are

uni�able is the set E = fs = tg. A variable x is solved in E if E = fx = tg℄E

0

,

x 62 vars(t) and x 62 vars(E).

Tautology E ℄ ft = tg)

SU

E

3.5. UNIFICATION CALCULI 101

Deomposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g)

SU

E [fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(s

1

; : : : ; s

n

) = g(s

1

; : : : ; s

m

)g)

SU

?

if f 6= g

Substitution

E ℄ fx = tg)

SU

Efx 7! tg [fx = tg

if x 2 vars(E) and x 62 vars(t)

Ours Chek

E ℄ fx = tg)

SU

?

if x 6= t and x 2 vars(t)

Orient

E ℄ ft = xg)

SU

E [fx = tg

if t 62 X

Theorem 3.5.1 (Soundness, Completeness and Termination of)

SU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg)

�

SU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2.)

SU

terminates on fs = tg.

3. if fs = tg)

�

SU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg)

�

SU

? then s and t are not uni�able.

5. if fs = tg)

�

SU

fx

1

= t

1

; : : : ; x

n

= t

n

g and this is a normal form, then

fx

1

7! t

1

; : : : ; x

n

7! t

n

g is an mgu of s, t.

Proof. 1. by indution on the length of the derivation and a ase analysis for

the di�erent rules.

2. for a state E = fs

1

= t

1

; : : : ; s

n

= t

n

g take the measure �(E) := (n;M; k)

where n is the number of unsolved variables,M the multiset of all term depths of

the s

i

, t

i

and k the number of equations t = x in E where t is not a variable. The

state ? is mapped to (0; ;; 0). Then the lexiographi ombination of > on the

naturals and its multiset extension shows that any rule appliation derements

the measure.

3. by indution on the length of the derivation and a ase analysis for the

di�erent rules. Clearly, for any state where Clash, or Ours Chek generate ?

the respetive equation is not uni�able.

4. a diret onsequene of 3.

5. if E = fx

1

= t

1

; : : : ; x

n

= t

n

g is a normal form, then for all x

i

= t

i

we have

x

i

62 vars(t

i

) and x

i

62 vars(E n fx

i

= t

i

g), so fx

1

= t

1

; : : : ; x

n

= t

n

gfx

1

7!

t

1

; : : : ; x

n

7! t

n

g = ft

1

= t

1

; : : : ; t

n

= t

n

g and hene fx

1

7! t

1

; : : : ; x

n

7! t

n

g is

an mgu of fx

1

= t

1

; : : : ; x

n

= t

n

g. By 3. it is also an mgu of s, t.

102 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.5.2 (Size of Standard Uni�ation Problems). Any normal form of

the uni�ation problem E given by

ff(x

1

; g(x

1

; x

1

); x

3

; : : : ; g(x

n

; x

n

)) = f(g(x

0

; x

0

); x

2

; g(x

2

; x

2

); : : : ; x

n+1

)g

with respet to)

SU

is exponentially larger than E.

The seond alulus, polynomial uni�ation, prevents the problem of expo-

nential growth by introduing an impliit representation for the mgu. For this

alulus the size of a normal form is always polynomial in the size of the input

uni�ation problem.

Tautology E ℄ ft = tg)

PU

E

Deomposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g)

PU

E ℄ fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(t

1

; : : : ; t

n

) = g(s

1

; : : : ; s

m

)g)

PU

?

if f 6= g

Ours Chek

E ℄ fx = tg)

PU

?

if x 6= t and x 2 vars(t)

Orientation

E ℄ ft = xg)

PU

E ℄ fx = tg

if t 62 X

Substitution

E ℄ fx = yg)

PU

Efx 7! yg ℄ fx = yg

if x 2 vars(E) and x 6= y

Cyle E ℄ fx

1

= t

1

; : : : ; x

n

= t

n

g)

PU

?

if there are positions p

i

with t

i

j

p

i

= x

i+1

; t

n

j

p

n

= x

1

and some p

i

6= �

Merge E ℄ fx = t; x = sg)

PU

E ℄ fx = t; t = sg

if t; s 62 X and jtj � jsj

Theorem 3.5.3 (Soundness, Completeness and Termination of)

PU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg)

�

PU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2.)

PU

terminates on fs = tg.

3. if fs = tg)

�

PU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg)

�

PU

? then s and t are not uni�able.

Theorem 3.5.4 (Uni�er generated by)

PU

). Let fs = tg)

�

PU

fx

1

=

t

1

; : : : ; x

n

= t

n

g. Then

3.6. FIRST-ORDER TABLEAUX 103

 Desendant (t)

8x

S

: fx

S

7! tg

:9x

S

: : fx

S

7! tg

for any ground term t 2 T

S

(�)

Æ Desendant Æ()

9x

S

: fx

S

7! g

:8x

S

: : fx

S

7! g

for some fresh Skolem onstant 2 T

S

(�)

Figure 3.1: - and Æ-Formulas

1. x

i

6= x

j

for all i 6= j and without loss of generality x

i

=2 vars(t

i+k

) for all

i; k, 1 � i < n, i+ k � n.

2. the substitution fx

1

7! t

1

gfx

2

7! t

2

g : : : fx

n

7! t

n

g is an mgu of s = t.

Proof. 1. If x

i

= x

j

for some i 6= j then Merge is appliable. If x

i

2 vars(t

i

)

for some i then Ours Chek is appliable. If the x

i

annot be ordered in the

desribed way, then either Substitution or Cyle is appliable.

2. Sine x

i

=2 vars(t

i+k

the omposition yields the mgu.

3.6 First-Order Tableaux

The di�erent versions of tableaux for �rst-order logi di�er in partiular in the

treatment of variables by the tableaux rules. The �rst variant is standard �rst-

order tableaux where variables are instantiated by ground terms.

De�nition 3.6.1 (-,Æ-Formulas). A formula � is alled a -formula if � is a

formula 8x

S

: or :9x

S

: . A formula � is alled a Æ-formula if � is a formula

9x

S

: or :8x

S

: .

De�nition 3.6.2 (Diret Standard Tableaux Desendant). Given a - or Æ-

formula �, Figure 3.1 shows its diret desendants.

For the standard �rst-order tableaux rules to make sense \enough" Skolem

onstants are needed in the signature, e.g., ountably in�nitely many for eah

sort. A Æ formula � ourring in some sequene is alled open if no diret de-

sendant of it is part of the sequene. In general, the number of desendants

annot be limited for a suessful tableaux proof.

-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

FT

N℄f(�

1

; : : : ; ; : : : ; �

n

;

0

)g

provided is a -formula,

0

a (t) desendant where t is an arbitrary ground

term in the signature of the sequene (branh) and the sequene is not losed.

Æ-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

FT

N℄f(�

1

; : : : ; ; : : : ; �

n

;

0

)g

104 CHAPTER 3. FIRST-ORDER LOGIC

provided is an open Æ-formula,

0

a Æ() desendant where is fresh to the

sequene and the sequene is not losed.

The standard �rst-order tableaux alulus onsists of the rules �-, and

�-expansion (see Setion 2.4) and the above two rules -Expansion and Æ-

Expansion.

Theorem 3.6.3 (Standard First-Order Tableaux is Sound and Complete). A

formula � (without equality) is valid i� standard tableaux omputes a losed

state out of f(:�)g.

Skolem onstants are suÆient: In a Æ-formula 9x�, 9 is the outermost quan-

ti�er and x is the only free variable in �. The rule has to be applied several

times to the same formula for tableaux to be omplete. For instane, onstrut-

ing a losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying -expansion twie on one path.

The main disadvantage of standard �rst-order tableau is that the ground

term instanes need to be guessed. The whole omplexity of the problem lies in

this guessing as for otherwise tableaux terminates. A natural idea is to guess

ground terms that an eventually be used to lose a branh. This is the idea

of free-variable �rst-order tableaux. Instead of guessing a ground term for a

 formula the variable remains, the instantiation is delayed until a branh is

losed for two literals via uni�ation. As a onsequene, for Æ formulas no longer

onstants are introdued but Skolem terms in the formerly universally quanti�ed

variables that had the Æ formula in their sope.

The new alulus suggests to keep trak of sopes of variables, so I move

from a state as a set of sequenes of formulas to a set of sequenes of pairs

l

i

= (�

i

; X

i

) where X

i

is a set of variables.

De�nition 3.6.4 (Diret Free-Variable Tableaux Desendant). Given a - or

Æ-formula �, Figure 3.2 shows its diret desendants.

-Expansion N℄f(l

1

; : : : ; (;X); : : : ; l

n

)g)

FT

N℄f(l

1

; : : : ; (;X); : : : ; l

n

; (

0

; X[

fyg))g

provided is a -formula,

0

a (y) desendant where y is fresh to the sequene

(branh) and the sequene is not losed.

Æ-Expansion N℄f(l

1

; : : : ; (;X); : : : ; l

n

)g)

FT

N℄f(l

1

; : : : ; (;X); : : : ; l

n

; (

0

; X))g

provided is an open Æ-formula,

0

a Æ(f(y

1

; : : : ; y

n

)) desendant where f is

fresh to the sequene, X = fy

1

; : : : ; y

n

g and the sequene is not losed.

Branh-Closing N ℄ f(l

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; l

n

)g)

FT

N� ℄

f(�

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; �

n

; g�

3.6. FIRST-ORDER TABLEAUX 105

 Desendant (y)

8x

S

: fx

S

7! yg

:9x

S

: : fx

S

7! yg

for a fresh variable y; sort(y) = S

Æ Desendant Æ(f(y

1

; : : : ; y

n

))

9x

S

: fx

S

7! f(y

1

; : : : ; y

n

)g

:8x

S

: : fx

S

7! f(y

1

; : : : ; y

n

)g

for some fresh Skolem funtion f

where f(y

1

; : : : ; y

n

) 2 T

S

(�)

Figure 3.2: - and Æ-Formulas

provided K and L are literals and there is an mgu � suh that K� = :L� and

the sequene is not losed.

The standard �rst-order tableaux alulus onsists of the rules �-, and �-

expansion (see Setion 2.4) whih are adapted to pairs and the above three rules

-Expansion, Æ-Expansion and Branh-Closing.

Theorem 3.6.5 (Free-variable First-Order Tableaux is Sound and Complete).

A formula � (without equality) is valid i� free-variable tableaux omputes a

losed state out of f(:�)g.

Example 3.6.6.

1: :[9w8xR(x;w; f(x;w)) ! 9w8x9yR(x;w; y)℄

2: 9w8x R(x;w; f(x;w)) 1

1

[�℄

3: :9w8x9y R(x;w; y) 1

2

[�℄

4: 8x R(x; ; f(x;)) 2() [Æ℄

5: :8x9y R(x; v

1

; y) 3(v

1

) [℄

6: :9y R(g(v

1

); v

1

; y) 5(g(v

1

)) [Æ℄

7: R(v

2

; ; f(v

2

;)) 4(v

2

) [℄

8: :R(g(v

1

); v

1

; v

3

) 6(v

3

) [℄

7. and 8. are omplementary (modulo uni�ation):

v

2

= g(v

1

); = v

1

; f(v

2

;) = v

3

is solvable with an mgu � = fv

1

7! ; v

2

7! g(); v

3

7! f(g();)g, and hene,

T� is a losed (linear) tableau for the formula in 1.

Problem: Stritness for is still inomplete. For instane, onstruting a

losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying -expansion twie on one path.

Semanti Tableau vs. Resolution

106 CHAPTER 3. FIRST-ORDER LOGIC

1. Tableau: global, goal-oriented, \bakward".

2. Resolution: loal, \forward".

3. Goal-orientation is a lear advantage if only a small subset of a large set

of formulas is neessary for a proof. (Note that resolution provers saturate

also those parts of the lause set that are irrelevant for proving the goal.)

4. Resolution an be ombined with more powerful redundany elimination

methods; beause of its global nature this is more diÆult for the tableau

method.

5. Resolution an be re�ned to work well with equality; for tableau this seems

to be impossible.

6. On the other hand tableau aluli an be easily extended to other logis;

in partiular tableau provers are very suessful in modal and desription

logis.

3.7 First-Order CNF Transformation

Similar to the propositional ase, �rst-order superposition operates on lauses.

In this setion I show how any �rst-order sentene an be eÆiently transformed

into a CNF, preserving satis�ability. To this end all existentially quanti�ed

variables are replaed with so alled Skolem funtions. Similar to renaming this

replaement only preserves satis�ability. Eventually, all variables in lauses are

impliitly universally quanti�ed.

As usual, the CNF transformation is done by a set of rules. All rules known

from the propositional ase apply. Further rules deal with the quanti�es 8, 9

and some of the propositional rules need an extension in order to ope with

�rst-order variables.

The �rst set of rules eliminates > and ? from a �rst-order formula.

ElimTB1

�[(� ^ >)℄

p

)

CNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

CNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

CNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

CNF

�[�℄

p

ElimTB5

�[:?℄

p

)

CNF

�[>℄

p

ElimTB6

�[:>℄

p

)

CNF

�[?℄

p

3.7. FIRST-ORDER CNF TRANSFORMATION 107

ElimTB7

�[�$?℄

p

)

CNF

�[:�℄

p

ElimTB8

�[�$ >℄

p

)

CNF

�[�℄

p

ElimTB9

�[�! ?℄

p

)

CNF

�[:�℄

p

ElimTB10

�[�! >℄

p

)

CNF

�[>℄

p

ElimTB11

�[? ! �℄

p

)

CNF

�[>℄

p

ElimTB12

�[> ! �℄

p

)

CNF

�[�℄

p

ElimTB13

�[f8; 9gx:>℄

p

)

CNF

�[>℄

p

ElimTB14

�[f8; 9gx:?℄

p

)

CNF

�[?℄

p

where the expression f8; 9gx:� overs both ases 8x:� and 9x:�. The next

step is to rename all variable suh that di�erent quanti�ers bind di�erent vari-

ables. This step is neessary to prevent a later on onfusion of variables.

RenVar

�)

CNF

��

for � = fg

One the variable renaming is done, renaming of bene�ial subformulas is

the next step. The mehanism of renaming and the onept of a bene�ial sub-

formula is exatly the same as in propositional logi. The only di�erene is

that renaming does introdue an atom in the free variables of the respetive

subformula. When some formula is renamed at position p an atom P (~x

n

),

~x

n

= x

1

; : : : ; x

n

replaes j

p

where fvars(j

p

) = fx

1

: : : ; x

n

g. The respetive

de�nition of P (~x

n

) beomes

def(; p; P (~x

n

)) :=

8

<

:

8 ~x

n

:(P (~x

n

)! j

p

) if pol(; p) = 1

8 ~x

n

:(j

p

! P (~x

n

)) if pol(; p) = �1

8 ~x

n

:(P (~x

n

)$ j

p

) if pol(; p) = 0

and the rule SimpleRenaming is hanged aordingly.

SimpleRenaming �)

CNF

�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n

℄

p

n

^ def(�; p

1

; A

1

) ^

: : : ^ def(�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n�1

℄

p

n�1

; p

n

; A

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the A

i

= P

i

(x

i;1

; : : : ; x

i;k

i

) where fvars(�j

p

i

) = fx

i;1

; : : : ; x

i;k

i

g and all P

i

are di�erent and new to �

108 CHAPTER 3. FIRST-ORDER LOGIC

Negation normal form is again done as in the propositional ase with addi-

tional rules for the quanti�ers.

ElimEquiv1 �[(�$)℄

p

)

CNF

�[(�!) ^ (! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$)℄

p

)

CNF

�[(� ^) _ (:� ^ :)℄

p

provided pol(�; p) = �1

ElimImp �[(�!)℄

p

)

CNF

�[(:� _)℄

p

PushNeg1 �[:(� _)℄

p

)

CNF

�[(:� ^ :)℄

p

PushNeg2 �[:(� ^)℄

p

)

CNF

�[(:� _ :)℄

p

PushNeg3 �[::�℄

p

)

CNF

�[�℄

p

PushNeg4 �[:8x:�℄

p

)

CNF

�[9x::�℄

p

PushNeg5 �[:9x:�℄

p

)

CNF

�[8x::�℄

p

In propositional logi after NNF, the CNF an be generated using distribu-

tivity. In �rst-order logi the existential quanti�ers are eliminated �rst by the

introdution of Skolem funtions. In order to reeive Skolem funtions with few

arguments, the quanti�ers are �rst moved inwards as far as passible. This step

is alled mini-soping.

MiniSope1 �[8x:(

1

Æ

2

)℄

p

)

CNF

�[(8x:

1

) Æ

2

℄

p

provided Æ 2 f^;_g, x 62 fvars(

2

)

MiniSope2 �[9x:(

1

Æ

2

)℄

p

)

CNF

�[(9x:

1

) Æ

2

℄

p

provided Æ 2 f^;_g, x 62 fvars(

2

)

MiniSope3 �[8x:(

1

^

2

)℄

p

)

CNF

�[(8x:

1

) ^ (8x:

2

)�℄

p

where � = fg, x 2 (fvars(

1

) \ fvars(

2

))

MiniSope4 �[9x:(

1

_

2

)℄

p

)

CNF

�[(9x:

1

) _ (9x:

2

)�℄

p

where � = fg; x 2 (fvars(

1

) \ fvars(

2

))

3.7. FIRST-ORDER CNF TRANSFORMATION 109

The rules MiniSope1, MiniSope2 are applied modulo the ommutativity

of ^, _. One the quanti�ers are moved inwards Skolemization an take plae.

Skolemization

�[9x; ℄

p

)

CNF

�[fx 7! f(y

1

; : : : ; y

n

)g℄

p

provided there is no q, q < p with �j

q

= 9x

0

:

0

, fvars(9x:) = fy

1

; : : : ; y

n

g,

arity(f) = n is a new funtion symbol to � mathing the respetive sorts of the

y

i

with range sort sort(x)

Example 3.7.1 (Mini-Soping and Skolemization). Consider the simple for-

mula 8x:9y:(R(x; x) ^ P (y). Applying Skolemization diretly to this formula,

without mini-soping results in

8x:9y:(R(x; x) ^ P (y)))

CNF,Skolemization

8x:(R(x; x) ^ P (g(x))

for a unary Skolem funtion g beause fvars(9y:(R(x; x)^P (y))) = fxg. Apply-

ing mini-soping and then Skolemization generates

8x:9y:(R(x; x) ^ P (y)))

�

CNF,MiniSope2,1

8x:R(x; x) ^ 9y:P (y)

)

CNF,Skolemization

8x:R(x; x) ^ P (a)

for some Skolem onstant a beause fvars(9y:P (y)) = ;. Now the former for-

mula after Skolemization is seriously more omplex than the latter. The former

belongs to an undeidable fragment of �rst-order logi while the latter belongs

to a deidable one (see Setion 3.14).

Finally, the universal quanti�ers are removed. In a �rst-order logi CNF any

variable is universally quanti�ed by default. Furthermore, the variables of two

di�erent lauses are always assumed to be di�erent.

RemForall

�[8x: ℄

p

)

CNF

�[℄

p

The atual CNF is then done by distributivity.

PushDisj �[(�

1

^ �

2

) _ ℄

p

)

CNF

�[(�

1

_) ^ (�

2

_)℄

p

Theorem 3.7.2 (Properties of the CNF Transformation). Let � be a �rst-order

sentene, then

1. nf(�) terminates

2. � is satis�able i� nf(�) is satis�able

Proof. (Idea) 1. is a straightforward extension of the propositional ase. It is

easy to de�ne a measure for any line of Algorithm 6.

2. an also be established separately for all rule appliations. The rules SimpleR-

enaming and Skolemization need separate proofs, the rest is straightforward or

opied from the propositional ase.

110 CHAPTER 3. FIRST-ORDER LOGIC

Algorithm 6: nf(�)

Input : A �rst-order formula �.

Output: A formula in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB14(�)) do ;

2 RenVar(�);

3 SimpleRenaming(�) on obvious positions;

4 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

5 whilerule (ElimImp(�)) do ;

6 whilerule (PushNeg1(�),: : :,PushNeg5(�)) do ;

7 whilerule (MiniSope1(�),: : :,MiniSope4(�)) do ;

8 whilerule (Skolemization(�)) do ;

9 whilerule (RemForall(�)) do ;

10 whilerule (PushDisj(�)) do ;

11 return �;

C In addition to the onsideration of repeated subformulas, disussed

in Setion 2.5, for �rst-order renaming another tehnique an pay o�:

generalization. Consider the formula [�

1

_ (Q

1

(a

1

) ^Q

2

(a

1

))℄ ^ [�

2

_ (Q

1

(a

2

) ^

Q

2

(a

2

))℄^ : : :^ [�

n

_ (Q

1

(a

n

)^Q

2

(a

n

)℄. SimpleRenaming on obvious renamings

applied to this formula will independently rename any ourrenes of a formula

(Q

1

(a

i

)^Q

2

(a

i

)). However generalization pays o� here. By adding the de�nition

8x; y (R(x; y) ! (Q

1

(x) ^ Q

2

(y))) and replaing the i

th

ourrene of the on-

junt by R(x; y)fx 7! a

i

; y 7! a

i

g one de�nition for all subformula ourrenes

suÆes.

3.8 Herbrand Interpretations

For propositional logi the existene of a anonial model is straightforward

beause the de�nition of the semantis leads to an e�etive representation. A

propositional variable an be either true or false. For �rst-order logi this is no

longer straightforward beause an interpretation an assign any non-empty set

to a sort, any funtion to a funtion symbol and any relation to a prediate

symbol. A giant step forward towards the mehanization of �rst-order logi

was the disovery of a anonial model onstrution by Herbrand. A �rst-order

formula has a model i� it has suh a anonial model whih is build out of the

syntax.

For this and the following setion I restrit the fous to �rst-order logi

without equality. Equality is then onsidered and added to the onepts of this

hapter in Chapters ??, ??.

De�nition 3.8.1 (Herbrand Interpretation). A Herbrand Interpretation (over

�) is a �-algebra A so that

1. S

A

= T

S

(�) for every sort S 2 S

3.8. HERBRAND INTERPRETATIONS 111

2. f

A

: (s

1

; : : : ; s

n

) 7! f(s

1

; : : : ; s

n

) where f 2
, arity(f) = n, s

i

2 T

S

i

(�)

and f : S

1

� : : :� S

n

! S is the sort delaration for f

3. P

A

� (T

S

1

(�) � : : : � T

S

m

(�)) where P 2 �, arity(P) = m and P �

S

1

� : : :� S

m

is the sort delaration for P

In other words, values are �xed to be ground terms and funtions are �xed

to be the term onstrutors. Only prediate symbols may be freely interpreted

as relations over ground terms.

Proposition 3.8.2. Every set of ground atoms I uniquely determines a Her-

brand interpretation A via

(s

1

; : : : ; s

n

) 2 P

A

i� P (s

1

; : : : ; s

n

) 2 I

Thus Herbrand interpretations (over �) an be identi�ed with sets of �-

ground atoms. A Herbrand interpretation I is alled a Herbrand model of �, if

I j= �.

Example 3.8.3. Consider the signature � = (fSg; fa; bg; fP;Qg), where a; b

are onstants, arity(P) = 1, arity(Q) = 2, and all onstants, prediates are

de�ned over the sort S. Then the following are examples of Herbrand interpre-

tations over �, where for all interpretations S

A

= fa; bg.

I

1

: = ;

I

2

: = fP (a); Q(a; a); Q(b; b)g

I

3

: = fP (a); P (b); Q(a; a); Q(b; b); Q(a; b); Q(b; a)g

Now onsider the extension �

0

of � by one unary funtion symbol g : S ! S.

Then the following are examples of Herbrand interpretations over �

0

, where for

all interpretations S

A

= fa; b; g(a); g(b); g(g(a)); : : :g.

I

0

1

: = ;

I

0

2

: = fP (a); Q(a; g(a)); Q(b; b)g

I

0

3

: = fP (a); P (g(a)); P (g(g(a))); : : : ; Q(a; a); Q(b; b); Q(b; g(b)); Q(b; g(g(b))); : : :g

Theorem 3.8.4 (Herbrand). Let N be a set of �-lauses. Then N is satis�able

i� N has a Herbrand model over � i� ground(�; N) has a Herbrand model

over �, where ground(�; N) = fC� j C 2 N; dom(�) = vars(C); and x� 2

T

sort(x)

(�) for all x 2 dom(�)g is the set of ground instanes of N .

Example 3.8.5 (Example of a ground(�; N)). Consider �

0

from Example 3.8.3

and the lause set N = fQ(x; x) _ :P (x);:P (x) _ P (g(x))g. Then the set of

ground instanes ground(�

0

; N) = f

Q(a; a) _ :P (a)

Q(b; b) _ :P (b)

Q(g(a); g(a)) _ :P (g(a))

: : :

:P (a) _ P (g(a))

:P (b) _ P (g(b))

:P (g(a)) _ P (g(g(a)))

: : :g

112 CHAPTER 3. FIRST-ORDER LOGIC

is satis�able. For example by the Herbrand models

I

1

: = ;

I

2

: = fP (b); Q(b; b); P (g(b)); Q(g(b); g(b)); : : :g

3.9 Orderings

De�nition 3.9.1 (�-Operation Compatible Relation). A binary relation

A over T (�;X) is alled ompatible with �-operations, if s A s

0

implies

f(t

1

; : : : ; s; : : : ; t

n

) A f(t

1

; : : : ; s

0

; : : : ; t

n

) for all f 2
 and s; s

0

; t

i

2 T (�;X).

Lemma 3.9.2. A relation A is ompatible with �-operations i� s A s

0

implies

t[s℄

p

A t[s

0

℄

p

for all s; s

0

; t 2 T (�;X) and p 2 pos(t).

In the literature ompatible with �-operations is sometimes also alled om-

patible with ontexts.

De�nition 3.9.3 (Substitution Stable Relation, Rewrite Relation). A binary

relation A over T (�;X) is alled stable under substitutions, if s A s

0

implies

s� A s

0

� for all s; s

0

2 T (�;X) and substitutions �. A binary relation A is

alled a rewrite relation, if it is ompatible with �-operations and stable under

substitutions.

De�nition 3.9.4 (Lexiographial Path Ordering (LPO)). Let � = (S;
;�)

be a signature and let � be a strit partial ordering on operator symbols in
,

alled preedene. The lexiographial path ordering �

lpo

on T (�;X) is de�ned

as follows: if s; t are terms in T

S

(�;X) then s �

lpo

t i�

1. t = x 2 X , x 2 vars(s) and s 6= t or

2. s = f(s

1

; : : : ; s

n

), t = g(t

1

; : : : ; t

m

) and

(a) s

i

�

lpo

t for some i 2 f1; : : : ; ng or

(b) f � g and s �

lpo

t

j

for every j 2 f1; : : : ;mg or

() f = g, s �

lpo

t

j

for every j 2 f1; : : : ;mg and (s

1

; : : : ; s

n

)(�

lpo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.5. 1. The LPO is a rewrite ordering.

2. If the preedene � is total on
 then �

lpo

is total on the set of ground

terms T (�).

3. If
 is �nite then �

lpo

is well-founded.

Example 3.9.6. Consider the terms g(x), g(y), g(g(a)), g(b), g(a), b, a. With

respet to the preedene g � b � a the ordering on the ground terms is

g(g(a)) �

lpo

g(b) �

lpo

g(a) �

lpo

b �

lpo

a. The terms g(x) and g(y) are not

omparable. Note that the terms g(g(a)), g(b), g(a) are all instanes of both

g(x) and g(y).

With respet to the preedene b � a � g the ordering on the ground terms

is g(b) �

lpo

b �

lpo

g(g(a)) �

lpo

g(a) �

lpo

a.

3.9. ORDERINGS 113

De�nition 3.9.7 (The Knuth-Bendix Ordering). Let � = (S;
;�) be a �nite

signature, let � be a strit partial ordering (\preedene") on
, let w :
 [

X ! R

+

0

be a weight funtion, so that the following admissibility onditions are

satis�ed:

1. w(x) = w

0

2 R

+

for all variables x 2 X ; w() � w

0

for all onstants 2
.

2. If w(f) = 0 for some f 2
 with arity(f) = 1, then f � g for all g 2
.

Then, the weight funtion w an be extended to terms reursively:

w(f(t

1

; : : : ; t

n

)) = w(f) +

X

1�i�n

w(t

i

)

or alternatively

X

w(t) =

X

x2vars(t)

w(x) �#(x; t) +

X

f2

w(f) �#(f; t)

where #(a; t) is the number of ourrenes of a in t.

The Knuth-Bendix ordering �

kbo

on T (�;X) indued by � and admissible

w is de�ned by: s �

kbo

t i�

1. #(x; s) � #(x; t) for all variables x and w(s) > w(t), or

2. #(x; s) � #(x; t) for all variables x, w(s) = w(t), and

(a) t = x, s = f

n

(x) for some n � 1, or

(b) s = f(s

1

; : : : ; s

m

), t = g(t

1

; : : : ; t

n

), and f � g, or

() s = f(s

1

; : : : ; s

m

), t = f(t

1

; : : : ; t

m

), and (s

1

; : : : ; s

m

)(�

kbo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.8. 1. The KBO is a rewrite ordering.

2. If the preedene � is total on
 then �

kbo

is total on the set of ground

terms T (�).

3. If
 is �nite then �

kbo

is well-founded.

The LPO ordering as well as the KBO ordering an be extended to atoms in

a straightforward way. The preedene � is extended to �. For LPO atoms are

then ompared aording to De�nition 3.9.4-2. For KBO the weight funtion w

is also extended to atoms by giving prediates a non-zero positive weight and

then atoms are ompared aording to terms.

Atually, sine atoms are never substituted for variables in �rst-order logi,

an alternative to the above would be to �rst ompare the prediate symbols and

let � deide the ordering. Only if the atoms share the same prediate symbol,

the argument terms are onsidered, e.g., in a lexiographi way and are then

ompared with respet to KBO or LPO, respetively.

114 CHAPTER 3. FIRST-ORDER LOGIC

3.10 Ground Superposition

Propositional lauses and ground lauses are essentially the same, as long as

equational atoms are not onsidered. This setion deals only with ground lauses

and realls mostly the material from Setion 2.6 for �rst-order ground lauses.

Let N be a set of ground lauses.

De�nition 3.10.1 (Clause Ordering). Let � be a total strit rewrite ordering

on terms and atoms. Then � an be lifted to a total ordering �

L

on literals

by its multiset extension �

mul

where a positive literal P (t

1

; : : : ; t

n

) is mapped

to the multiset fP (t

1

; : : : ; t

n

)g and a negative literal :P (t

1

; : : : ; t

n

) to the mul-

tiset fP (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

)g. The ordering �

L

is further lifted to a total

ordering on lauses �

C

by onsidering the multiset extension of �

L

for lauses.

Proposition 3.10.2 (Properties of the Clause Ordering). (i) The orderings on

literals and lauses are total and well-founded.

(ii) Let C and D be lauses with P (t

1

; : : : ; t

n

) = jmax(C)j, Q(s

1

; : : : ; s

m

) =

jmax(D)j, where max(C) denotes the maximal literal in C.

1. If Q(s

1

; : : : ; s

m

) �

L

P (t

1

; : : : ; t

n

) then D �

C

C.

2. If P (t

1

; : : : ; t

n

) = Q(s

1

; : : : ; s

m

), P (t

1

; : : : ; t

n

) ours negatively in C but

only positively in D, then D �

C

C.

Eventually, as I did for propositional logi, I overload � with �

L

and �

C

. So

if � is applied to literals it denotes �

L

, if it is applied to lauses, it denotes �

C

.

Note that � is a total ordering on literals and lauses as well. For superposition,

inferenes are restrited to maximal literals with respet to �. For a lause set

N , I de�ne N

�C

= fD 2 N j D � Cg.

De�nition 3.10.3 (Abstrat Redundany). A ground lause C is redundant

with respet to a ground lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed lauses are redundant if � is strit.

Dupliate lauses are anyway eliminated quietly beause the alulus operates

on sets of lauses.

C

Note that for �nite N , and any C 2 N redundany N

�C

j= C an

be deided but is as hard as testing unsatis�ability for a lause set

N . So the goal is to invent redundany notions that an be eÆiently

deided and that are useful.

De�nition 3.10.4 (Seletion Funtion). The seletion funtion sel maps lauses

to one of its negative literals or ?. If sel(C) = :P (t

1

; : : : ; t

n

) then :P (t

1

; : : : ; t

n

)

is alled seleted in C. If sel(C) = ? then no literal in C is seleted.

The seletion funtion is, in addition to the ordering, a further means to

restrit superposition inferenes. If a negative literal is seleted on a lause, any

superposition inferene must be on the seleted literal.

3.10. GROUND SUPERPOSITION 115

De�nition 3.10.5 (Partial Model Constrution). Given a lause set N and an

ordering � we an onstrut a (partial) model N

I

for N indutively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fP (t

1

; : : : ; t

n

)g if D = D

0

_ P (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

) stritly maximal, no literal

seleted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are alled produtive.

Proposition 3.10.6. Some properties of the partial model onstrution.

1. For every D with (C _:P (t

1

; : : : ; t

n

)) � D we have Æ

D

6= fP (t

1

; : : : ; t

n

)g.

2. If Æ

C

= fP (t

1

; : : : ; t

n

)g then N

C

[Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in partiular N

I

j= D.

4. There is no lause C with P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) � C suh that

Æ

C

= fPg.

T

Please properly distinguish: N is a set of lauses interpreted as the

onjuntion of all lauses. N

�C

is of set of lauses from N stritly

smaller than C with respet to �. N

I

, N

C

are Herbrand interpreta-

tions (see Proposition 3.8.2). N

I

is the overall (partial) model for N , whereas

N

C

is generated from all lauses from N stritly smaller than C.

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (t

1

; : : : ; t

n

)g))

SUP

(N [fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (t

1

; : : : ; t

n

)g [fC

1

_ C

2

g)

where (i) P (t

1

; : : : ; t

n

) is stritly maximal in C

1

_ P (t

1

; : : : ; t

n

) (ii) no literal in

C

1

_P (t

1

; : : : ; t

n

) is seleted (iii) :P (t

1

; : : : ; t

n

) is maximal and no literal seleted

in C

2

_ :P (t

1

; : : : ; t

n

), or :P (t

1

; : : : ; t

n

) is seleted in C

2

_ :P (t

1

; : : : ; t

n

)

Fatoring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g))

SUP

(N [fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g [fC _ P (t

1

; : : : ; t

n

)g)

where (i) P (t

1

; : : : ; t

n

) is maximal in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) (ii) no

literal is seleted in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)

Note that the superposition fatoring rule di�ers from the resolution fator-

ing rule in that it only applies to positive literals.

De�nition 3.10.7 (Saturation). A set N of lauses is alled saturated up to

redundany, if any inferene from non-redundant lauses in N yields a redundant

lause with respet to N .

116 CHAPTER 3. FIRST-ORDER LOGIC

Examples for spei� redundany rules that an be eÆiently deided are

Subsumption (N ℄ fC

1

; C

2

g))

SUP

(N [fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g))

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg))

SUP

(N [fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg))

SUP

(N [fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 3.10.8. All lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respet to the

kept or added lauses.

Theorem 3.10.9. LetN be a, possibly ountably in�nite, set of ground lauses.

If N is saturated up to redundany and ? =2 N then N is satis�able and N

I

j=

N .

Proof. The proof is by ontradition. So I assume: (i) for any lause D derived

by Superposition Left or Fatoring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respet to �, lause

C_L 2 N suh that N

I

6j= C_L and L is a seleted literal in C_L or no literal

in C _ L is seleted and L is maximal. This lause must exist beause ? =2 N .

The lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hene N

I

j= C _ L, beause N

I

j= N

�C_L

, a ontradition.

I distinguish the ase L is a positive and no literal seleted in C _ L or L

is a negative literal. Firstly, assume L is positive, i.e., L = P (t

1

; : : : ; t

n

) for

some ground atom P (t

1

; : : : ; t

n

). Now if P (t

1

; : : : ; t

n

) is stritly maximal in

C _ P (t

1

; : : : ; t

n

) then atually Æ

C_P

= fP (t

1

; : : : ; t

n

)g and hene N

I

j= C _ P ,

a ontradition. So P (t

1

; : : : ; t

n

) is not stritly maximal. But then atually C _

P (t

1

; : : : ; t

n

) has the form C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

) and Fatoring derives

C

0

1

_P (t

1

; : : : ; t

n

) where (C

0

1

_P (t

1

; : : : ; t

n

)) � (C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

)).

Now C

0

1

_ P (t

1

; : : : ; t

n

) is not redundant, stritly smaller than C _ L, we have

C

0

1

_P (t

1

; : : : ; t

n

) 2 N and N

I

6j= C

0

1

_P (t

1

; : : : ; t

n

), a ontradition against the

hoie that C _ L is minimal.

Seondly, let us assume L is negative, i.e., L = :P (t

1

; : : : ; t

n

) for some

ground atom P (t

1

; : : : ; t

n

). Then, sine N

I

6j= C _ :P (t

1

; : : : ; t

n

) we know

P (t

1

; : : : ; t

n

) 2 N

I

. So there is a lause D _ P (t

1

; : : : ; t

n

) 2 N where

Æ

D_P (t

1

;:::;t

n

)

= fP (t

1

; : : : ; t

n

)g and P (t

1

; : : : ; t

n

) is stritly maximal in D _

P (t

1

; : : : ; t

n

) and (D _ P (t

1

; : : : ; t

n

)) � (C _ :P (t

1

; : : : ; t

n

)). So Superposition

Left derives C _ D where (C _ D) � (C _ :P (t

1

; : : : ; t

n

)). The derived lause

C _ D annot be redundant, beause for otherwise either N

�D_P (t

1

;:::;t

n

)

j=

3.10. GROUND SUPERPOSITION 117

D _ P (t

1

; : : : ; t

n

) or N

�C_:P (t

1

;:::;t

n

)

j= C _ :P (t

1

; : : : ; t

n

). So C _D 2 N and

N

I

6j= C _D, a ontradition against the hoie that C _L is the minimal false

lause.

So the proof atually tells us that at any point in time we need only to

onsider either a superposition left inferene between a minimal false lause and

a produtive lause or a fatoring inferene on a minimal false lause.

Theorem 3.10.10 (Compatness of First-Order Logi). Let N be a, possibly

in�nite, set of �rst-order logi ground lauses. Then N is unsatis�able i� there

is a �nite subset N

0

� N suh that N

0

is unsatis�able.

Proof. If N is unsatis�able, saturation via superposition generates ?. So there

is an i suh that N)

i

SUP

N

0

and ? 2 N

0

. The lause ? is the result of at

most i many superposition inferenes, redutions on lauses fC

1

; : : : ; C

n

g � N .

Superposition is sound, so fC

1

; : : : ; C

n

g is a �nite, unsatis�able subset of N .

Corollary 3.10.11 (Compatness of First-Order Logi: Classial). A set N of

lauses is satis�able i� all �nite subsets of N are satis�able

Theorem 3.10.12 (Soundness and Completeness of Ground Superposition). A

�rst-order �-sentene � is valid i� there exists a ground superposition refutation

for ground(�; nf(:�)).

Proof. A �rst-order sentene � is valid i� :� is unsatis�able i� nf(:�) is unsat-

is�able i� ground(�; nf(:�)) is unsatis�able i� superposition provides a refu-

tation of ground(�; nf(:�)).

Theorem 3.10.13 (Semi-Deidability of First-Order Logi by Ground Super-

position). If a �rst-order �-sentene � is valid then a ground superposition

refutation an be omputed.

Proof. In a fair way enumerate ground(�; nf(:�)) and perform superposition

inferene steps. The enumeration an, e.g., be done by onsidering Herbrand

terms of inreasing size.

Example 3.10.14 (Ground Superposition). Consider the below lauses 1-4

and superposition refutation with respet a KBO with preedene P � Q �

g � f � � b � a where the weight funtion w returns 1 for all signature

symbols. Maximal literals are marked with a

�

.

1: :P (f())

�

_ :P (f())

�

_Q(b) (Input)

2: P (f())

�

_Q(b) (Input)

3: :P (g(b;))

�

_ :Q(b) (Input)

4: P (g(b;))

�

(Input)

5: :P (f())

�

_Q(b) (Cond(1))

6: Q(b)

�

_Q(b)

�

(Sup(5; 2)))

7: Q(b)

�

(Fat(6))

8: :Q(b)

�

(Sup(3; 4))

10: ? (Sup(8; 7))

118 CHAPTER 3. FIRST-ORDER LOGIC

Note that lause 5 annot be derived by Fatoring whereas lause 7 an also be

derived by Condensation. Clause 8 is also the result of a Subsumption Resolution

appliation to lauses 3, 4.

Theorem 3.10.15 (Craig Theorem [14℄). Let � and be two propositional

formulas so that � j= . Then there exists a formula � (alled the interpolant

for � j=), so that � ontains only propositional variables ourring both in �

and in so that � j= � and � j= .

Proof. Translate � and : into CNF. let N and M , respetively, denote the

resulting lause set. Choose an atom ordering � for whih the propositional

variables that our in � but not in are maximal. Saturate N into N

�

w.r.t.

Sup

�

sel

with an empty seletion funtion sel. Then saturate N

�

[M w.r.t. Sup

�

sel

to derive ?. As N

�

is already saturated, due to the ordering restritions only

inferenes need to be onsidered where premises, if they are from N

�

, only

ontain symbols that also our in . The onjuntion of these premises is an

interpolant �. The theorem also holds for �rst-order formulas. For universal for-

mulas the above proof an be easily extended. In the general ase, a proof based

on superposition tehnology is more ompliated beause of Skolemization.

3.11 First-Order Superposition with Seletion

The ompleteness proof of ground superposition (Setion 3.10) talks about

(stritly) maximal literals of ground lauses. The non-ground alulus onsiders

those literals that orrespond to (stritly) maximal literals of ground instanes.

The used ordering is exatly the ordering of De�nition 3.10.1 where lauses

with variables are projeted to their ground instanes for ordering omputations.

De�nition 3.11.1 (Maximal Literal). A literal L is alled [stritly℄ maximal

in a lause C if and only if there exists a grounding substitution � so that L�

is [stritly℄ maximal in C� (i.e., if for no other L

0

in C: L� � L

0

� [L� � L

0

�℄).

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (s

1

; : : : ; s

n

)g))

SUP

(N [fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (s

1

; : : : ; s

n

)g [f(C

1

_ C

2

)�g)

where (i) P (t

1

; : : : ; t

n

)� is stritly maximal in (C

1

_ P (t

1

; : : : ; t

n

))� (ii) no

literal in C

1

_ P (t

1

; : : : ; t

n

) is seleted (iii) :P (t

1

; : : : ; t

n

)� is maximal and

no literal seleted in (C

2

_ :P (t

1

; : : : ; t

n

))�, or :P (t

1

; : : : ; t

n

) is seleted in

C

2

_ :P (t

1

; : : : ; t

n

) (iv) � is the mgu of P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)

Fatoring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g))

SUP

(N [fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g [f(C _ P (t

1

; : : : ; t

n

))�g)

where (i) P (t

1

; : : : ; t

n

)� is maximal in (C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

))�

(ii) no literal is seleted in C _ P (t

1

; : : : ; t

n

)_ P (t

1

; : : : ; t

n

) (iii) � is the mgu of

P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)

3.11. FIRST-ORDER SUPERPOSITION WITH SELECTION 119

Note that the above inferene rules Superpositions Left and Fatoring are

generalizations of their respetive ounterparts from Setion 3.10. On ground

lauses they oinide. Therefore, we an safely overload them in the sequel.

De�nition 3.11.2 (Abstrat Redundany). A lause C is redundant with

respet to a lause set N if for all ground instanes C� where are lauses

fC

1

; : : : ; C

n

g � N with ground instanes C

1

�

1

; : : : ; C

n

�

n

suh that C

i

�

i

� C�

for all i and C

1

�

1

; : : : ; C

n

�

n

j= C�.

De�nition 3.11.3 (Saturation). A set N of lauses is alled saturated up to

redundany, if any inferene from non-redundant lauses in N yields a redundant

lause with respet to N .

In ontrast to the ground ase, the above abstrat notion of redundany is

not e�etive, i.e., it is undeidable for some lause C whether it is redundant, in

general. Nevertheless, the onrete redundany notions from Setion 3.10 arry

over to the non-ground ase. Let dup be a funtion from lauses to lauses that

removes dupliate literals, i.e., dup(C) = C

0

where C

0

� C, C

0

does not ontain

any dupliate literals, and for eah L 2 C also L 2 C

0

.

Subsumption (N ℄ fC

1

; C

2

g))

SUP

(N [fC

1

g)

provided C

1

� � C

2

for some �

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g))

SUP

(N)

Condensation

(N ℄ fC

1

_L_L

0

g))

SUP

(N [fdup((C

1

_L_L

0

)�)g)

provided L� = L

0

and dup((C

1

_ L _ L

0

)�) subsumes C

1

_ L _ L

0

for some �

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ L

0

g))

SUP

(N [fC

1

_ L;C

2

g)

where L� = :L

0

and C

1

� � C

2

for some �

Lemma 3.11.4. All redution rules are instanes of the abstrat redundany

riterion

Lemma 3.11.5 (Subsumption is NP-omplete). Subsumption is NP-omplete.

Proof. Let C

1

subsume C

2

with substitution � Subsumption is in NP beause

the size of � is bound by the size of C

2

and the subset relation an be heked

in time at most quadrati in the size of C

1

and C

2

.

Propositional SAT an be redued as follows. Assume a 3-SAT lause set

N . Consider a 3-plae prediate R and a unary funtion g and a mapping from

propositional variables P to �rst order variables x

P

. : : :

Lemma 3.11.6 (Lifting). Let D_L and C_L

0

be variable-disjoint lauses and

� a grounding substitution for C _L and D _L

0

. If there is a superposition left

inferene

(N ℄ f(D _ L)�; (C _ L

0

)�g))

SUP

(N [f(D _ L)�; (C _ L

0

)�g [fD� _ C�g)

120 CHAPTER 3. FIRST-ORDER LOGIC

and if sel((D _ L)�) = sel((D _ L))�, sel((C _ L

0

)�) = sel((C _ L

0

))� , then

there exists a mgu � suh that

(N ℄ fD _ L;C _ L

0

g))

SUP

(N [fD _ L;C _ L

0

g [f(D _ C)�g):

Let C _ L _ L

0

be variable-disjoint lauses and � a grounding substitution

for C _ L _ L

0

. If there is a fatoring inferene

(N ℄ f(C _ L _ L

0

)�g))

SUP

(N [f(C _ L _ L

0

)�g [f(C _ L)�g)

and if sel((C _ L _ L

0

)�) = sel((C _ L _ L

0

))� , then there exists a mgu � suh

that

(N ℄ fC _ L _ L

0

g))

SUP

(N [fC _ L _ L

0

g [f(C _ L)�g)

Note that in the above lemma the lause D�_C� is an instane of the lause

(D _C)� The redution rules annot be lifted in the same way as the following

example shows.

Example 3.11.7 (First-Order Redutions are not Liftable). Consider the two

lauses P (x) _ Q(x), P (g(y)) and grounding substitution fx 7! g(a); y 7! ag.

Then P (g(y))� subsumes (P (x)_Q(x))� but P (g(y)) does not subsume P (x)_

Q(x). For all other redution rules similar examples an be onstruted.

Lemma 3.11.8 (Soundness and Completeness). Superposition is sound and

omplete.

Proof. Soundness is obvious. For ompleteness, Theorem 3.10.12 proves the

ground ase. Now by applying Lemma 3.11.6 to this proof it an be lifted to the

�rst-order level.

There are questions left open by Lemma 3.11.8. It just says that a ground

refutation an be lifted to a �rst-order refutation. But what about abstrat

redundany, De�nition 3.11.2? Can �rst-order redundant lauses be deleted

without harming ompleteness? And what about the ground model operator

with respet to lause sets N saturated on the �rst order level. Is in this ase

ground(�; N)

I

a model? The next two lemmas answer these questions positively.

Lemma 3.11.9 (Redundant Clauses are Obsolete). If a lause set N is unsat-

is�able, then there is a derivation N)

�

SUP

N

0

suh that ? 2 N

0

and no lause

in the derivation of ? is redundant.

Proof. If N is unsatis�able then there is a ground superposition refutation of

ground(�; N) suh that no ground lause in the refutation is redundant. Now

aording to Lemma 3.11.8 this proof an be lifted to the �rst-order level. Now

assume some lause C in the �rst-order proof is redundant that is the lifting of

some lause C� from the ground proof with respet to a grounding substitution

�. The lause C is redundant by De�nition 3.11.2 if all its ground instanes are,

in partiular, C�. But this ontradits the fat that the lifted ground proof does

not ontain redundant lauses.

3.11. FIRST-ORDER SUPERPOSITION WITH SELECTION 121

Lemma 3.11.10 (Model Property). If N is a saturated lause set and ? 62 N

then ground(�; N)

I

j= N .

Proof. As usual we assume that seletion on the ground and respetive non-

ground lauses is idential. Assume ground(�; N)

I

6j= N . Then there is a min-

imal ground lause C�, C 6= ?, C 2 N suh that ground(�; N)

I

6j= C�.

Note that C� is not redundant as for otherwise ground(�; N)

I

j= C�. So

ground(�; N) is not saturated. If C� is produtive, i.e., C� = (C

0

_ L)� suh

that L is positive, L� stritly maximal in (C

0

_ L)� then L� 2 ground(�; N)

I

and hene ground(�; N)

I

j= C� ontraditing ground(�; N)

I

6j= C�.

If C� = (C

0

_L_L

0

)� suh that L is positive, L� maximal in (C

0

_L_L

0

)�

then, beause N is saturated, there is a lause (C

0

_ L)� 2 N suh that (C

0

_

L)�� = (C

0

_L)�. Now (C

0

_L)� is not redundant, ground(�; N)

I

6j= (C

0

_L)� ,

ontraditing the minimal hoie of C�.

If C� = (C

0

_L)� suh that L is seleted, or negative and maximal then there

is a lause (D

0

_L

0

) 2 N and grounding substitution �, suh that L

0

� is a stritly

maximal positive literal in (D

0

_ L

0

)�, L

0

� 2 ground(�; N)

I

and L

0

� = :L�.

Again, sine N is saturated, there is variable disjoint lause (C

0

_ D

0

)� 2 N

for some uni�er � , (C

0

_ D

0

)��� � C�, and ground(�; N)

I

6j= (C

0

_ D

0

)���

ontraditing the minimal hoie of C�.

De�nition 3.11.11 (Persistent Clause). Let N

0

)

SUP

N

1

)

SUP

: : : be a,

possibly in�nite, superposition derivation. A lause C is alled persistent in this

derivation if C 2 N

i

for some i and for all j > i also C 2 N

j

.

De�nition 3.11.12 (Fair Derivation). A derivation N

0

)

SUP

N

1

)

SUP

: : : is

alled fair if for any persistent lause C 2 N

i

where fatoring is appliable to

C, there is a j suh that the fator of C

0

2 N

j

or ? 2 N

j

. If fC;Dg � N

i

are

persistent lauses suh that superposition left is appliable to C, D then the

superposition left result is also in N

j

for some j or ? 2 N

j

.

Theorem 3.11.13 (Dynami Superposition Completeness). If N is unsatis�-

able and N = N

0

)

SUP

N

1

)

SUP

: : : is a fair derivation, then there is ? 2 N

j

for some j.

Proof. If N is unsatis�able, then by Lemma 3.11.8 there is a derivation of ?

by superposition. Furthermore, no lause ontributing to the derivation of ? is

redundant (Lemma 3.11.9). So all lauses in the derivation of ? are persistent.

The derivation N

0

)

SUP

N

1

)

SUP

: : : is fair, hene ? 2 N

j

for some j.

Lemma 3.11.14. Let red(N) be all lauses that are redundant with respet to

the lauses in N and N , M be lause sets. Then

1. if N �M then red(N) � red(M)

2. if M � red(N) then red(N) � red(N nM)

It follows that redundany is preserved when, during a theorem proving

proess, new lauses are added (or derived) or redundant lauses are deleted.

Furthermore, red(N) may inlude lauses that are not in N .

122 CHAPTER 3. FIRST-ORDER LOGIC

Algorithm 7: SupProver(N)

Input : A set of lauses N .

Output: A saturated set of lauses N

0

, equivalent to N .

1 WO := ;;

2 US := N ;

3 while (US 6= ; and ? 62 US) do

4 Given:= pik a lause from US;

5 WO :=WO [fGiveng;

6 New := SupLeft(WO,Given) [Fat(Given);

7 while (New 6= ;) do

8 Given:= pik a lause from New;

9 if (!TautDel(Given)) then

10 if (!SubDel(Given,WO [US)) then

11 Given:= Cond(Given);

12 Given:= SubRes(Given,WO);

13 WO:= SubDel(WO,Given);

14 US:= SubDel(US,Given);

15 New:= New [SubRes(WO [US,Given);

16 US:= US [fGiven g;

17

18

19 end

20 end

21 return WO;

