
Chapter 3

First-Order Logi


First-Order logi
 is a generalization of propositional logi
. Propositional logi



an represent propositions, whereas �rst-order logi
 
an represent individuals

and propositions about individuals. For example, in propositional logi
 from

\So
rates is a man" and \If So
rates is a man then So
rates is mortal" the


on
lusion \So
rates is mortal" 
an be drawn. In �rst-order logi
 this 
an be

represented mu
h more �ne-grained. From \So
rates is a man" and \All man

are mortal" the 
on
lusion \So
rates is mortal" 
an be drawn.

This 
hapter introdu
es �rst-order logi
 with equality. However, all 
al
uli

presented here, namely Tableaux (Se
tion 3.6) and Superposition (Se
tion ??)

are presented only for its restri
tion without equality. Purely equational logi


and �rst-order logi
 with equality are presented separately in Chapter ?? and

Chapter ??, respe
tively.

3.1 Syntax

De�nition 3.1.1 (Many-Sorted Signature). A many-sorted signature � =

(S;
;�) is a pair 
onsisting of a �nite non-empty set S of sort symbols, a

non-empty set 
 of operator symbols (also 
alled fun
tion symbols) over S and

a set � of predi
ate symbols. Every operator symbol f 2 
 has a unique sort

de
laration f : S

1

� : : :�S

n

! S, indi
ating the sorts of arguments (also 
alled

domain sorts) and the range sort of f , respe
tively, for some S

1

; : : : ; S

n

; S 2 S

where n � 0 is 
alled the arity of f , also denoted with arity(f). An operator

symbol f 2 
 with arity 0 is 
alled a 
onstant. Every predi
ate symbol P 2 �

has a unique sort de
laration P � S

1

� : : : � S

n

. A predi
ate symbol P 2 �

with arity 0 is 
alled a propositional variable. For every sort S 2 S there must

be at least one 
onstant a 2 
 with range sort S.

In addition to the signature �, a variable set X , disjoint from 
 is assumed, so

that for every sort S 2 S there exists a 
ountably in�nite subset of X 
onsisting

of variables of the sort S. A variable x of sort S is denoted by x

S

.

De�nition 3.1.2 (Term). Given a signature � = (S;
;�), a sort S 2 S and
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94 CHAPTER 3. FIRST-ORDER LOGIC

a variable set X , the set T

S

(�;X ) of all terms of sort S is re
ursively de�ned

by (i) x

S

2 T

S

(�;X ) if x

S

2 X , (ii) f(t

1

; : : : ; t

n

) 2 T

S

(�;X ) if f 2 
 and

f : S

1

� : : :� S

n

! S and t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng.

The sort of a term t is denoted by sort(t), i.e., if t 2 T

S

(�;X ) then sort(t) =

S. A term not 
ontaining a variable is 
alled ground.

For the sake of simpli
ity it is often written: T (�;X ) for

S

S2S

T

S

(�;X ), the

set of all terms, T

S

(�) for the set of all ground terms of sort S 2 S, and T (�)

for

S

S2S

T

S

(�), the set of all ground terms over �.

De�nition 3.1.3 (Equation, Atom, Literal). If s; t 2 T

S

(�;X ) then s � t is an

equation over the signature �. Any equation is an atom (also 
alled atomi
 for-

mula) as well as every P (t

1

; : : : ; t

n

) where t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng

and P 2 �, arity(P ) = n, P � S

1

� : : : � S

n

. An atom or its negation of an

atom is 
alled a literal.

The literal s

.

� t denotes either s � t or t � s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal :(s � t) is written

as s 6� t.

C

Non equational atoms 
an be transformed into equations: For this a

given signature is extended for every predi
ate symbol P as follows:

(i) add a distin
t sort B to S, (ii) introdu
e a fresh 
onstant true of

the sort B to 
, (iii) for every predi
ate P , P � S

1

� : : : � S

n

add a fresh

fun
tion f

P

: S

1

; : : : ; S

n

! B to 
, and (iv) en
ode every atom P (t

1

; : : : ; t

n

) as

a fun
tion f

P

: S

1

; : : : ; S

n

! B. Thus, predi
ate atoms are turned into equations

f

P

(t

1

; : : : ; t

n

) � true. are overloaded here.

De�nition 3.1.4 (Formulas). The set FOL(�;X ) of many-sorted �rst-order

formulas with equality over the signature � is de�ned as follows for formulas

�;  2 F

�

(X ) and a variable x 2 X :

FOL(�;X ) Comment

? falsum

> verum

P (t

1

; : : : ; t

n

); s � t atom

(:�) negation

(� ^  ) 
onjun
tion

(� _  ) disjun
tion

(�!  ) impli
ation

(�$  ) equivalen
e

8x:� universal quanti�
ation

9x:� existential quanti�
ation

A 
onsequen
e of the above de�nition is that PROP(�) � FOL(�

0

;X ) if

the propositional variables of � are 
ontained in �

0

as predi
ates of arity 0. A

formula not 
ontaining a quanti�er is 
alled quanti�er-free.
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De�nition 3.1.5 (Positions). It follows from the de�nitions of terms and for-

mulas that they have tree-like stru
ture. For referring to a 
ertain subtree,


alled subterm or subformula, respe
tively, sequen
es of natural numbers are

used, 
alled positions (as introdu
ed in Chapter 2.1.3). The set of positions of

a term, formula is indu
tively de�ned by:

pos(x) := f�g if x 2 X

pos(�) := f�g if � 2 f>;?g

pos(:�) := f�g [ f1p j p 2 pos(�)g

pos(� Æ  ) := f�g [ f1p j p 2 pos(�)g [ f2p j p 2 pos( )g

pos(s � t) := f�g [ f1p j p 2 pos(s)g [ f2p j p 2 pos(t)g

pos(f(t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(P (t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(8x:�) := f�g [ f1p j p 2 pos(�)g

pos(9x:�) := f�g [ f1p j p 2 pos(�)g

where Æ 2 f^;_;!;$g and t

i

2 T (�;X ) for all i 2 f1; : : : ; ng.

The pre�x orders (above, stri
tly above and parallel), the sele
tion and re-

pla
ement with respe
t to positions are de�ned exa
tly as in Chapter 2.1.3.

An term t (formula �) is said to 
ontain another term s (formula  ) if t

p

= s

(�

p

=  ). It is 
alled a stri
t subexpression if p 6= �. The term t (formula �)

is 
alled an immediate subexpression of s (formula  ) if jpj = 1. For terms a

subexpression is 
alled a subterm and for formulas a subformula, respe
tively.

The size of a term t (formula �), written jtj (j�j), is the 
ardinality of pos(t),

i.e., jtj := j pos(t)j (j�j := j pos(�)j). The depth of a term, formula is the maximal

length of a position in the term, formula: depth(t) := maxfjpj j p 2 pos(t)g

(depth(�) := maxfjpj j p 2 pos(�)g). The set of all variables o

urring in a

term t (formula �) is denoted by vars(t) (vars(phi)) and formally de�ned as

vars(t) := fx 2 X j x = tj

p

; p 2 pos(t)g (vars(�) := fx 2 X j x = �j

p

; p 2

pos(�)g). A term t (formula �) is ground if vars(t) = ; (vars(�) = ;).

Note that vars(8x:a � b) = ; where a; b are 
onstants. This is justi�ed by the

fa
t that the formula does not depend on the quanti�er, see semanti
s below. The

set of free variables of a formula � (term t) is given by fvars(�; ;) (fvars(t; ;)) and

re
ursively de�ned by fvars( 

1

Æ 

2

; B) := fvars( 

1

; B)[ fvars( 

2

; B) where Æ 2

f^;_;!;$g, fvars(8x: ;B) := fvars( ;B[fxg), fvars(9x: ;B) := fvars( ;B[

fxg), fvars(: ;B) := fvars( ;B), fvars(L;B) := vars( ) n B (fvars(t; B) :=

vars(t) nB. For fvars(�; ;) I also write fvars(�)

In 8x:� (9x:�) the formula � is 
alled the s
ope of the quanti�er. An o
-


urren
e q of a variable x in a formula � (�j

q

= x) is 
alled bound if there is

some p < q with �j

p

= 8x:�

0

or �j

p

= 9x:�

0

. Any other o

urren
e of a vari-

able is 
alled free. A formula not 
ontaining a free o

urren
e of a variable is


alled 
losed. If fx

1

; : : : ; x

n

g are the variables freely o

urring in a formula

� then 8x

1

; : : : ; x

n

:� and 9x

1

; : : : ; x

n

:� (abbreviations for 8x

1

:8x

2

: : :8x

n

:�,

9x

1

:8x

2

: : :8x

n

:�, respe
tively) are the universal and the existential 
losure of

�.
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Example 3.1.6. For the literal :P (f(x; g(a))) the atom P (f(x; g(a))) is an

immediate subformula of o

urring at position 1. The terms x and g(a) are

stri
t subterms o

urring at positions 111 and 112, respe
tively. The for-

mula :P (f(x; g(a)))[b℄

111

= :P (f(b; g(a))) is obtained by repla
ing x with b.

pos(:P (f(x; g(a)))) = f�; 1; 11; 111; 112; 1121gmeaning its size is 6, its depth 4

and vars(:P (f(x; g(a)))) = fxg.

The polarity of a subformula  = �j

p

at position p is pol(�; p) where pol is

re
ursively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

pol(P (t

1

; : : : ; t

n

); p) := 1

pol(t � s; p) := 1

pol(8x:�; 1p) := pol(�; p)

pol(9x:�; 1p) := pol(�; p)

3.2 Semanti
s

De�nition 3.2.1 (�-algebra). Let � = (S;
;�) be a signature with set of

sorts S, operator set 
 and predi
ate set �. A �-algebra A, also 
alled �-

interpretation, is a mapping that assigns (i) a non-empty 
arrier set S

A

to every

sort S 2 S, so that (S

1

)

A

\(S

2

)

A

= ; for any distin
t sorts S

1

; S

2

2 S, (ii) a total

fun
tion f

A

: (S

1

)

A

� : : :�(S

n

)

A

! (S)

A

to every operator f 2 
, arity(f) = n

where f : S

1

� : : : � S

n

! S, (iii) a relation P

A

� ((S

1

)

A

� : : : � (S

m

)

A

) to

every predi
ate symbol P 2 �, arity(P ) = m. (iv) the equality relation be
omes

�

A

= f(e; e) j e 2 U

A

g where the set U

A

:=

S

S2S

(S)

A

is 
alled the universe of

A.

A (variable) assignment, also 
alled a valuation for an algebraA is a fun
tion

� : X ! U

A

so that �(x) 2 S

A

for every variable x 2 X , where S = sort(x). A

modi�
ation �[x 7! e℄ of an assignment � at a variable x 2 X , where e 2 S

A

and S = sort(x), is the assignment de�ned as follows:

�[x 7! e℄(y) =

(

e if x = y

�(y) otherwise.

Informally speaking, the assignment �[x 7! e℄ is identi
al to � for every variable

ex
ept x, whi
h is mapped by �[x 7! e℄ to e.

The homomorphi
 extension A(�) of � onto terms is a mapping T (�;X )!

U

A

de�ned as (i) A(�)(x) = �(x), where x 2 X and (ii) A(�)(f(t

1

; : : : ; t

n

)) =

f

A

(A(�)(t

1

); : : : ;A(�)(t

n

)), where f 2 
, arity(f) = n.
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Given a term t 2 T (�;X ), the value A(�)(t) is 
alled the interpretation of

t under A and �. If the term t is ground, the value A(�)(t) does not depend

on a parti
ular 
hoi
e of �, for whi
h reason the interpretation of t under A is

denoted by A(t).

An algebra A is 
alled term-generated, if every element e of the universe U

A

of A is the image of some ground term t, i.e., A(t) = e.

De�nition 3.2.2 (Semanti
s). An algebra A and an assignment � are extended

to formulas � 2 FOL(�;X ) by

A(�)(?) := 0

A(�)(>) := 1

A(�)(s � t) := 1 if A(�)(s) = A(�)(t) and 0 otherwise

A(�)(P (t

1

; : : : ; t

n

)) := 1 if (A(�)(t

1

); : : : ;A(�)(t

n

)) 2 P

A

and 0 otherwise

A(�)(:�) := 1�A(�)(�)

A(�)(� ^  ) := min(fA(�)(�);A(�)( )g)

A(�)(� _  ) := max(fA(�)(�);A(�)( )g)

A(�)(� !  ) := max(f(1�A(�)(�));A(�)( )g)

A(�)(� $  ) := if A(�)(�) = A(�)( ) then 1 else 0

A(�)(9x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for some e 2 S

A

and 0 otherwise

A(�)(8x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for all e 2 S

A

and 0 otherwise

A formula � is 
alled satis�able by A under � (or valid in A under �) if

A; � j= �; in this 
ase, � is also 
alled 
onsistent ; satis�able by A if A; � j= �

for some assignment �; satis�able if A; � j= � for some algebra A and some

assignment �; valid in A, written A j= �, if A; � j= � for any assignment �; in

this 
ase, A is 
alled a model of �; valid, written j= �, if A; � j= � for any algebra

A and any assignment �; in this 
ase, � is also 
alled a tautology ; unsatis�able

if A; � 6j= � for any algebra A and any assignment �; in this 
ase � is also 
alled

in
onsistent.

Note that ? is in
onsistent whereas > is valid. If � is a senten
e that is

a formula not 
ontaining a free variable, it is valid in A if and only if it is

satis�able by A. This means the truth of a senten
e does not depend on the


hoi
e of an assignment.

Given two formulas � and  , � entails  , or  is a 
onsequen
e of �, written

� j=  , if for any algebra A and assignment �, if A; � j= � then A; � j=  . The

formulas � and  are 
alled equivalent, written � j=j  , if � j=  and  j= �. Two

formulas � and  are 
alled equisatis�able, if � is satis�able i�  is satis�able (not

ne
essarily in the same models). Note that if � and  are equivalent then they

are equisatis�able, but not the other way around. The notions of \entailment",

\equivalen
e" and \equisatis�ability" are naturally extended to sets of formulas,

that are treated as 
onjun
tions of single formulas. Thus, given formula setsM

1

and M

2

, the set M

1

entails M

2

, written M

1

j= M

2

, if for any algebra A and

assignment �, if A; � j= � for every � 2M

1

then A; � j=  for every  2M

2

. The

sets M

1

and M

2

are equivalent, written M

1

j=jM

2

, if M

1

j=M

2

and M

2

j=M

1

.

Given an arbitrary formula � and formula set M , M j= � is written to denote

M j= f�g; analogously, � j=M stands for f�g j=M .
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Sin
e 
lauses are impli
itly universally quanti�ed disjun
tions of literals, a


lause C is satis�able by an algebra A if for every assignment � there is a literal

L 2 C with A; � j= L. Note that if C = fL

1

; : : : ; L

k

g is a ground 
lause, i.e.,

every L

i

is a ground literal, then A j= C if and only if there is a literal L

j

in C

so that A j= L

j

. A 
lause set N is satis�able i� all 
lauses C 2 N are satis�able

by the same algebra A. A

ordingly, if N and M are two 
lause sets, N j= M

i� every model A of N is also a model of M .

3.3 Equality

The equality predi
ate is build into the �rst-order language in Se
tion 3.1 and

not part of the signature. It is a �rst 
lass 
itizen. This is the 
ase although

it 
an be a
tually axiomatized in the language. The motivation is that �rstly,

many real world problems naturally 
ontain equations. They are a means to

de�ne fun
tions. Then predi
ates over terms model properties of the fun
tions.

Se
ondly, without spe
ial treatment in a 
al
ulus, it is almost impossible to

automati
ally prove non-trivial properties of a formula 
ontaining equations.

In this se
tion I �rstly show that any formula 
an be transformed into a

formula where all atoms are equations. Se
ondly, that any formula 
ontaining

equations 
an be transformed into a formula where the equality predi
ate is

repla
ed by a fresh predi
ate together with some axioms. In the �rst 
ase the

respe
tive 
lause sets are equivalent, in the se
ond 
ase the transformation is

satis�ability preserving. For the repla
ement of any predi
ate R by equations

over a fresh fun
tion f

R

we assume an additional fresh sort Bool with two fresh


onstants true and false.

InjEq �[R(t

1;1

; : : : ; t

1;n

)℄

p

1

: : : [R(t

m;1

; : : : ; t

m;n

)℄

p

m

)

IE

�[f

R

(t

1;1

; : : : ; t

1;n

) �

true℄

p

1

: : : [f

R

(t

m;1

; : : : ; t

m;n

) � true℄

p

m

provided R is a predi
ate o

urring in �, fp

1

; : : : ; p

m

g are all positions of atoms

with predi
ate R in � and f

R

is new with appropriate sorting

Proposition 3.3.1. Let �)

�

IE

�

0

then � is satis�able (valid) i� �

0

is satis�able

(valid).

Proof. (Sket
h) The basi
 proof idea is to establish the relation (t

A

1

; : : : ; t

A

n

) 2

R

A

i� f

A

R

(t

A

1

; : : : ; t

A

n

) = true

A

. Furthermore, the sort of true is fresh to � and

the equations f

R

(t

1

; : : : ; t

n

) � true do not interfere with any term t

i

be
ause

the f

R

are all fresh and only o

ur on top level of the equations.

When removing equality from a formula it needs to be axiomatized. For

simpli
ity, I assume here that the 
onsidered formula � is one-sorted, i.e., there

is only one sort o

urring for fun
tions, relations in �. The extension to formulas

with many sorts is straightforward and dis
ussed below.

RemEq �[l

1

� r

1

℄

p

1

: : : [l

m

� r

m

℄

p

m

)

RE

�[E(l

1

; r

1

)℄

p

1

: : : [E(l

m

; r

m

)℄

p

m

^

def(�;E)
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provided fp

1

; : : : ; p

m

g are all positions of equations l

i

= r

i

in � and E is a new

binary predi
ate

The formula def(�;E) is the axiomatization of equality for � and it 
onsists

of a 
onjun
tion of the equivalen
e relation axioms for E

8x:E(x; x)

8x; y:(E(x; y)! E(y; x))

8x; y; z:((E(x; y) ^ E(x; z))! E(x; z))

plus the 
ongruen
e axioms for E for every n-ary fun
tion symbol f

8x

1

; y

1

; : : : ; x

n

; y

n

:((E(x

1

; y

1

) ^ : : : ^E(x

n

; y

n

))! E(f(x

1

; : : : ; x

n

); f(y

1

; : : : ; y

n

)))

plus the 
ongruen
e axioms for E for every m-ary predi
ate symbol P

8x

1

; y

1

; : : : ; x

m

; y

m

:((E(x

1

; y

1

) ^ : : : ^ E(x

m

; y

m

) ^ P (x

1

; : : : ; x

m

))! P (y

1

; : : : ; y

m

)

Proposition 3.3.2. Let �)

RE

�

0

then � is satis�able i� �

0

is satis�able.

Proof. (Sket
h) The identity on an algebra (see De�nition 3.2.2) is a 
ongruen
e

relation proving the dire
tion from left to right. The dire
tion from right to left

is more involved.

Note that )

RE

is not validity preserving. Consider the simple example for-

mula a � a whi
h is valid for any 
onstant a. Its translation E(a; a) ^ def(a �

a;E) is not valid, e.g., 
onsider an algebra with E

A

= ;.

Now in 
ase � has many di�erent sorts then for ea
h sort S one new fresh

predi
ate E

S

is needed for the translation. For ea
h of these predi
ates equiv-

alen
e relation and 
ongruen
e axioms need to be generated where for every

fun
tion f only one axiom using E

S

is needed, where S is the range sort of S.

Similar for the domain sorts of f and a

ordingly for predi
ates.

3.4 Substitution and Uni�er

De�nition 3.4.1 (Substitution). A substitution is a mapping � : X ! T (�;X )

so that

1. �(x) 6= x for only �nitely many variables x and

2. sort(x) = sort(t) for every variable x 2 X that is mapped to a term

t 2 T

S

(�;X ).

The appli
ation �(x) of a substitution � to a variable x is often written in

post�x notation as x�. The variable set dom(�) := fx 2 X j x� 6= xg is 
alled

the domain of �. The term set 
odom(�) := fx� j x 2 dom(�)g is 
alled the


odomain of �. From the above de�nition of substitution it follows that dom(�)

is �nite for any substitution �. The 
omposition of two substitutions � and �

is written as a juxtaposition �� , i.e., t�� = (t�)� . A substitution � is 
alled

idempotent if �� = �. � is idempotent i� dom(�) \ vars(
odom(�)) = ;.

Substitutions are often written as fx

1

7! t

1

; : : : ; x

n

7! t

n

g if dom(�) =

fx

1

; : : : ; x

n

g and x

i

� = t

i

for every i 2 f1; : : : ; ng. The modi�
ationof a substi-

tution � at a variable x is de�ned as follows:
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�[x 7! t℄(y) =

�

t if y = x

�(y) otherwise

A substitution � is identi�ed with its extension to expression and de�ned as

following:

1. ?� = ?,

2. >� = >,

3. (f(t

1

; : : : ; t

n

))� = f(t

1

�; : : : ; t

n

�),

4. (P (t

1

; : : : ; t

n

))� = P (t

1

�; : : : ; t

n

�),

5. (s � t)� = (s� � t�),

6. (:�)� = :(��),

7. (� Æ  )� = �� Æ  � where Æ 2 f_;^g,

8. (Qx�)� = Qz(��[x 7! z℄) where Q 2 f8; 9g, z and x are of the same sort

and z is a fresh variable.

The result e� of applying a substitution � to an expression e is 
alled an

instan
e of e. The substitution � is 
alled ground if it maps every domain

variable to a ground term. If the appli
ation of a substitution � to an expression

e produ
es a ground expression e� then e� is 
alled ground instan
e of e. A

ground substitution � is 
alled grounding for an expression e if e� is ground. A

substitution � is 
alled variable renaming if im(�) � X and for any x; y 2 X , if

x 6= y then x� 6= y�.

De�nition 3.4.2 (Uni�er). Two terms s and t are said to be uni�able if there

exists a substitution � so that s� = t�, the substitution � is then 
alled a uni�er

of s and t. The uni�er � is 
alled most general uni�er, written � = mgu(s; t), if

any other uni�er � of s and t 
an be represented as � = ��

0

, for some substitution

�

0

.

3.5 Uni�
ation Cal
uli

The �rst 
al
ulus is the naive standard uni�
ation 
al
ulus that is typi
ally

found in the (old) literature on automated reasoning. A state of the naive stan-

dard uni�
ation 
al
ulus is a set of equations E or ?, where ? denotes that

no uni�er exists. The set E is also 
alled a uni�
ation problem. The start state

for 
he
king whether two terms s, t with sort(s) = sort(t) (or atoms A, B) are

uni�able is the set E = fs = tg. A variable x is solved in E if E = fx = tg℄E

0

,

x 62 vars(t) and x 62 vars(E).

Tautology E ℄ ft = tg )

SU

E
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De
omposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g )

SU

E [ fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(s

1

; : : : ; s

n

) = g(s

1

; : : : ; s

m

)g )

SU

?

if f 6= g

Substitution

E ℄ fx = tg )

SU

Efx 7! tg [ fx = tg

if x 2 vars(E) and x 62 vars(t)

O

urs Che
k

E ℄ fx = tg )

SU

?

if x 6= t and x 2 vars(t)

Orient

E ℄ ft = xg )

SU

E [ fx = tg

if t 62 X

Theorem 3.5.1 (Soundness, Completeness and Termination of )

SU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg )

�

SU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2. )

SU

terminates on fs = tg.

3. if fs = tg )

�

SU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg )

�

SU

? then s and t are not uni�able.

5. if fs = tg )

�

SU

fx

1

= t

1

; : : : ; x

n

= t

n

g and this is a normal form, then

fx

1

7! t

1

; : : : ; x

n

7! t

n

g is an mgu of s, t.

Proof. 1. by indu
tion on the length of the derivation and a 
ase analysis for

the di�erent rules.

2. for a state E = fs

1

= t

1

; : : : ; s

n

= t

n

g take the measure �(E) := (n;M; k)

where n is the number of unsolved variables,M the multiset of all term depths of

the s

i

, t

i

and k the number of equations t = x in E where t is not a variable. The

state ? is mapped to (0; ;; 0). Then the lexi
ographi
 
ombination of > on the

naturals and its multiset extension shows that any rule appli
ation de
rements

the measure.

3. by indu
tion on the length of the derivation and a 
ase analysis for the

di�erent rules. Clearly, for any state where Clash, or O

urs Che
k generate ?

the respe
tive equation is not uni�able.

4. a dire
t 
onsequen
e of 3.

5. if E = fx

1

= t

1

; : : : ; x

n

= t

n

g is a normal form, then for all x

i

= t

i

we have

x

i

62 vars(t

i

) and x

i

62 vars(E n fx

i

= t

i

g), so fx

1

= t

1

; : : : ; x

n

= t

n

gfx

1

7!

t

1

; : : : ; x

n

7! t

n

g = ft

1

= t

1

; : : : ; t

n

= t

n

g and hen
e fx

1

7! t

1

; : : : ; x

n

7! t

n

g is

an mgu of fx

1

= t

1

; : : : ; x

n

= t

n

g. By 3. it is also an mgu of s, t.
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Example 3.5.2 (Size of Standard Uni�
ation Problems). Any normal form of

the uni�
ation problem E given by

ff(x

1

; g(x

1

; x

1

); x

3

; : : : ; g(x

n

; x

n

)) = f(g(x

0

; x

0

); x

2

; g(x

2

; x

2

); : : : ; x

n+1

)g

with respe
t to )

SU

is exponentially larger than E.

The se
ond 
al
ulus, polynomial uni�
ation, prevents the problem of expo-

nential growth by introdu
ing an impli
it representation for the mgu. For this


al
ulus the size of a normal form is always polynomial in the size of the input

uni�
ation problem.

Tautology E ℄ ft = tg )

PU

E

De
omposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g )

PU

E ℄ fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(t

1

; : : : ; t

n

) = g(s

1

; : : : ; s

m

)g )

PU

?

if f 6= g

O

urs Che
k

E ℄ fx = tg )

PU

?

if x 6= t and x 2 vars(t)

Orientation

E ℄ ft = xg )

PU

E ℄ fx = tg

if t 62 X

Substitution

E ℄ fx = yg )

PU

Efx 7! yg ℄ fx = yg

if x 2 vars(E) and x 6= y

Cy
le E ℄ fx

1

= t

1

; : : : ; x

n

= t

n

g )

PU

?

if there are positions p

i

with t

i

j

p

i

= x

i+1

; t

n

j

p

n

= x

1

and some p

i

6= �

Merge E ℄ fx = t; x = sg )

PU

E ℄ fx = t; t = sg

if t; s 62 X and jtj � jsj

Theorem 3.5.3 (Soundness, Completeness and Termination of )

PU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg )

�

PU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2. )

PU

terminates on fs = tg.

3. if fs = tg )

�

PU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg )

�

PU

? then s and t are not uni�able.

Theorem 3.5.4 (Uni�er generated by )

PU

). Let fs = tg )

�

PU

fx

1

=

t

1

; : : : ; x

n

= t

n

g. Then
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 Des
endant 
(t)

8x

S

:  fx

S

7! tg

:9x

S

: : fx

S

7! tg

for any ground term t 2 T

S

(�)

Æ Des
endant Æ(
)

9x

S

:  fx

S

7! 
g

:8x

S

: : fx

S

7! 
g

for some fresh Skolem 
onstant 
 2 T

S

(�)

Figure 3.1: 
- and Æ-Formulas

1. x

i

6= x

j

for all i 6= j and without loss of generality x

i

=2 vars(t

i+k

) for all

i; k, 1 � i < n, i+ k � n.

2. the substitution fx

1

7! t

1

gfx

2

7! t

2

g : : : fx

n

7! t

n

g is an mgu of s = t.

Proof. 1. If x

i

= x

j

for some i 6= j then Merge is appli
able. If x

i

2 vars(t

i

)

for some i then O

urs Che
k is appli
able. If the x

i


annot be ordered in the

des
ribed way, then either Substitution or Cy
le is appli
able.

2. Sin
e x

i

=2 vars(t

i+k

the 
omposition yields the mgu.

3.6 First-Order Tableaux

The di�erent versions of tableaux for �rst-order logi
 di�er in parti
ular in the

treatment of variables by the tableaux rules. The �rst variant is standard �rst-

order tableaux where variables are instantiated by ground terms.

De�nition 3.6.1 (
-,Æ-Formulas). A formula � is 
alled a 
-formula if � is a

formula 8x

S

: or :9x

S

: . A formula � is 
alled a Æ-formula if � is a formula

9x

S

: or :8x

S

: .

De�nition 3.6.2 (Dire
t Standard Tableaux Des
endant). Given a 
- or Æ-

formula �, Figure 3.1 shows its dire
t des
endants.

For the standard �rst-order tableaux rules to make sense \enough" Skolem


onstants are needed in the signature, e.g., 
ountably in�nitely many for ea
h

sort. A Æ formula � o

urring in some sequen
e is 
alled open if no dire
t de-

s
endant of it is part of the sequen
e. In general, the number of 
 des
endants


annot be limited for a su

essful tableaux proof.


-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

FT

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

0

)g

provided  is a 
-formula,  

0

a 
(t) des
endant where t is an arbitrary ground

term in the signature of the sequen
e (bran
h) and the sequen
e is not 
losed.

Æ-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

FT

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

0

)g
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provided  is an open Æ-formula,  

0

a Æ(
) des
endant where 
 is fresh to the

sequen
e and the sequen
e is not 
losed.

The standard �rst-order tableaux 
al
ulus 
onsists of the rules �-, and

�-expansion (see Se
tion 2.4) and the above two rules 
-Expansion and Æ-

Expansion.

Theorem 3.6.3 (Standard First-Order Tableaux is Sound and Complete). A

formula � (without equality) is valid i� standard tableaux 
omputes a 
losed

state out of f(:�)g.

Skolem 
onstants are suÆ
ient: In a Æ-formula 9x�, 9 is the outermost quan-

ti�er and x is the only free variable in �. The 
 rule has to be applied several

times to the same formula for tableaux to be 
omplete. For instan
e, 
onstru
t-

ing a 
losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying 
-expansion twi
e on one path.

The main disadvantage of standard �rst-order tableau is that the 
 ground

term instan
es need to be guessed. The whole 
omplexity of the problem lies in

this guessing as for otherwise tableaux terminates. A natural idea is to guess

ground terms that 
an eventually be used to 
lose a bran
h. This is the idea

of free-variable �rst-order tableaux. Instead of guessing a ground term for a


 formula the variable remains, the instantiation is delayed until a bran
h is


losed for two literals via uni�
ation. As a 
onsequen
e, for Æ formulas no longer


onstants are introdu
ed but Skolem terms in the formerly universally quanti�ed

variables that had the Æ formula in their s
ope.

The new 
al
ulus suggests to keep tra
k of s
opes of variables, so I move

from a state as a set of sequen
es of formulas to a set of sequen
es of pairs

l

i

= (�

i

; X

i

) where X

i

is a set of variables.

De�nition 3.6.4 (Dire
t Free-Variable Tableaux Des
endant). Given a 
- or

Æ-formula �, Figure 3.2 shows its dire
t des
endants.


-Expansion N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

)g )

FT

N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

; ( 

0

; X[

fyg))g

provided  is a 
-formula,  

0

a 
(y) des
endant where y is fresh to the sequen
e

(bran
h) and the sequen
e is not 
losed.

Æ-Expansion N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

)g )

FT

N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

; ( 

0

; X))g

provided  is an open Æ-formula,  

0

a Æ(f(y

1

; : : : ; y

n

)) des
endant where f is

fresh to the sequen
e, X = fy

1

; : : : ; y

n

g and the sequen
e is not 
losed.

Bran
h-Closing N ℄ f(l

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; l

n

)g )

FT

N� ℄

f(�

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; �

n

; g�
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 Des
endant 
(y)

8x

S

:  fx

S

7! yg

:9x

S

: : fx

S

7! yg

for a fresh variable y; sort(y) = S

Æ Des
endant Æ(f(y

1

; : : : ; y

n

))

9x

S

:  fx

S

7! f(y

1

; : : : ; y

n

)g

:8x

S

: : fx

S

7! f(y

1

; : : : ; y

n

)g

for some fresh Skolem fun
tion f

where f(y

1

; : : : ; y

n

) 2 T

S

(�)

Figure 3.2: 
- and Æ-Formulas

provided K and L are literals and there is an mgu � su
h that K� = :L� and

the sequen
e is not 
losed.

The standard �rst-order tableaux 
al
ulus 
onsists of the rules �-, and �-

expansion (see Se
tion 2.4) whi
h are adapted to pairs and the above three rules


-Expansion, Æ-Expansion and Bran
h-Closing.

Theorem 3.6.5 (Free-variable First-Order Tableaux is Sound and Complete).

A formula � (without equality) is valid i� free-variable tableaux 
omputes a


losed state out of f(:�)g.

Example 3.6.6.

1: :[9w8xR(x;w; f(x;w)) ! 9w8x9yR(x;w; y)℄

2: 9w8x R(x;w; f(x;w)) 1

1

[�℄

3: :9w8x9y R(x;w; y) 1

2

[�℄

4: 8x R(x; 
; f(x; 
)) 2(
) [Æ℄

5: :8x9y R(x; v

1

; y) 3(v

1

) [
℄

6: :9y R(g(v

1

); v

1

; y) 5(g(v

1

)) [Æ℄

7: R(v

2

; 
; f(v

2

; 
)) 4(v

2

) [
℄

8: :R(g(v

1

); v

1

; v

3

) 6(v

3

) [
℄

7. and 8. are 
omplementary (modulo uni�
ation):

v

2

= g(v

1

); 
 = v

1

; f(v

2

; 
) = v

3

is solvable with an mgu � = fv

1

7! 
; v

2

7! g(
); v

3

7! f(g(
); 
)g, and hen
e,

T� is a 
losed (linear) tableau for the formula in 1.

Problem: Stri
tness for 
 is still in
omplete. For instan
e, 
onstru
ting a


losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying 
-expansion twi
e on one path.

Semanti
 Tableau vs. Resolution
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1. Tableau: global, goal-oriented, \ba
kward".

2. Resolution: lo
al, \forward".

3. Goal-orientation is a 
lear advantage if only a small subset of a large set

of formulas is ne
essary for a proof. (Note that resolution provers saturate

also those parts of the 
lause set that are irrelevant for proving the goal.)

4. Resolution 
an be 
ombined with more powerful redundan
y elimination

methods; be
ause of its global nature this is more diÆ
ult for the tableau

method.

5. Resolution 
an be re�ned to work well with equality; for tableau this seems

to be impossible.

6. On the other hand tableau 
al
uli 
an be easily extended to other logi
s;

in parti
ular tableau provers are very su

essful in modal and des
ription

logi
s.

3.7 First-Order CNF Transformation

Similar to the propositional 
ase, �rst-order superposition operates on 
lauses.

In this se
tion I show how any �rst-order senten
e 
an be eÆ
iently transformed

into a CNF, preserving satis�ability. To this end all existentially quanti�ed

variables are repla
ed with so 
alled Skolem fun
tions. Similar to renaming this

repla
ement only preserves satis�ability. Eventually, all variables in 
lauses are

impli
itly universally quanti�ed.

As usual, the CNF transformation is done by a set of rules. All rules known

from the propositional 
ase apply. Further rules deal with the quanti�es 8, 9

and some of the propositional rules need an extension in order to 
ope with

�rst-order variables.

The �rst set of rules eliminates > and ? from a �rst-order formula.

ElimTB1

�[(� ^ >)℄

p

)

CNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

CNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

CNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

CNF

�[�℄

p

ElimTB5

�[:?℄

p

)

CNF

�[>℄

p

ElimTB6

�[:>℄

p

)

CNF

�[?℄

p
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ElimTB7

�[�$ ?℄

p

)

CNF

�[:�℄

p

ElimTB8

�[�$ >℄

p

)

CNF

�[�℄

p

ElimTB9

�[�! ?℄

p

)

CNF

�[:�℄

p

ElimTB10

�[�! >℄

p

)

CNF

�[>℄

p

ElimTB11

�[? ! �℄

p

)

CNF

�[>℄

p

ElimTB12

�[> ! �℄

p

)

CNF

�[�℄

p

ElimTB13

�[f8; 9gx:>℄

p

)

CNF

�[>℄

p

ElimTB14

�[f8; 9gx:?℄

p

)

CNF

�[?℄

p

where the expression f8; 9gx:� 
overs both 
ases 8x:� and 9x:�. The next

step is to rename all variable su
h that di�erent quanti�ers bind di�erent vari-

ables. This step is ne
essary to prevent a later on 
onfusion of variables.

RenVar

� )

CNF

��

for � = fg

On
e the variable renaming is done, renaming of bene�
ial subformulas is

the next step. The me
hanism of renaming and the 
on
ept of a bene�
ial sub-

formula is exa
tly the same as in propositional logi
. The only di�eren
e is

that renaming does introdu
e an atom in the free variables of the respe
tive

subformula. When some formula  is renamed at position p an atom P ( ~x

n

),

~x

n

= x

1

; : : : ; x

n

repla
es  j

p

where fvars( j

p

) = fx

1

: : : ; x

n

g. The respe
tive

de�nition of P ( ~x

n

) be
omes

def( ; p; P ( ~x

n

)) :=

8

<

:

8 ~x

n

:(P ( ~x

n

)!  j

p

) if pol( ; p) = 1

8 ~x

n

:( j

p

! P ( ~x

n

)) if pol( ; p) = �1

8 ~x

n

:(P ( ~x

n

)$  j

p

) if pol( ; p) = 0

and the rule SimpleRenaming is 
hanged a

ordingly.

SimpleRenaming � )

CNF

�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n

℄

p

n

^ def(�; p

1

; A

1

) ^

: : : ^ def(�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n�1

℄

p

n�1

; p

n

; A

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the A

i

= P

i

(x

i;1

; : : : ; x

i;k

i

) where fvars(�j

p

i

) = fx

i;1

; : : : ; x

i;k

i

g and all P

i

are di�erent and new to �
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Negation normal form is again done as in the propositional 
ase with addi-

tional rules for the quanti�ers.

ElimEquiv1 �[(�$  )℄

p

)

CNF

�[(�!  ) ^ ( ! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$  )℄

p

)

CNF

�[(� ^  ) _ (:� ^ : )℄

p

provided pol(�; p) = �1

ElimImp �[(�!  )℄

p

)

CNF

�[(:� _  )℄

p

PushNeg1 �[:(� _  )℄

p

)

CNF

�[(:� ^ : )℄

p

PushNeg2 �[:(� ^  )℄

p

)

CNF

�[(:� _ : )℄

p

PushNeg3 �[::�℄

p

)

CNF

�[�℄

p

PushNeg4 �[:8x:�℄

p

)

CNF

�[9x::�℄

p

PushNeg5 �[:9x:�℄

p

)

CNF

�[8x::�℄

p

In propositional logi
 after NNF, the CNF 
an be generated using distribu-

tivity. In �rst-order logi
 the existential quanti�ers are eliminated �rst by the

introdu
tion of Skolem fun
tions. In order to re
eive Skolem fun
tions with few

arguments, the quanti�ers are �rst moved inwards as far as passible. This step

is 
alled mini-s
oping.

MiniS
ope1 �[8x:( 

1

Æ  

2

)℄

p

)

CNF

�[(8x: 

1

) Æ  

2

℄

p

provided Æ 2 f^;_g, x 62 fvars( 

2

)

MiniS
ope2 �[9x:( 

1

Æ  

2

)℄

p

)

CNF

�[(9x: 

1

) Æ  

2

℄

p

provided Æ 2 f^;_g, x 62 fvars( 

2

)

MiniS
ope3 �[8x:( 

1

^  

2

)℄

p

)

CNF

�[(8x: 

1

) ^ (8x: 

2

)�℄

p

where � = fg, x 2 (fvars( 

1

) \ fvars( 

2

))

MiniS
ope4 �[9x:( 

1

_  

2

)℄

p

)

CNF

�[(9x: 

1

) _ (9x: 

2

)�℄

p

where � = fg; x 2 (fvars( 

1

) \ fvars( 

2

))
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The rules MiniS
ope1, MiniS
ope2 are applied modulo the 
ommutativity

of ^, _. On
e the quanti�ers are moved inwards Skolemization 
an take pla
e.

Skolemization

�[9x;  ℄

p

)

CNF

�[ fx 7! f(y

1

; : : : ; y

n

)g℄

p

provided there is no q, q < p with �j

q

= 9x

0

: 

0

, fvars(9x: ) = fy

1

; : : : ; y

n

g,

arity(f) = n is a new fun
tion symbol to � mat
hing the respe
tive sorts of the

y

i

with range sort sort(x)

Example 3.7.1 (Mini-S
oping and Skolemization). Consider the simple for-

mula 8x:9y:(R(x; x) ^ P (y). Applying Skolemization dire
tly to this formula,

without mini-s
oping results in

8x:9y:(R(x; x) ^ P (y)))

CNF,Skolemization

8x:(R(x; x) ^ P (g(x))

for a unary Skolem fun
tion g be
ause fvars(9y:(R(x; x)^P (y))) = fxg. Apply-

ing mini-s
oping and then Skolemization generates

8x:9y:(R(x; x) ^ P (y)) )

�

CNF,MiniS
ope2,1

8x:R(x; x) ^ 9y:P (y)

)

CNF,Skolemization

8x:R(x; x) ^ P (a)

for some Skolem 
onstant a be
ause fvars(9y:P (y)) = ;. Now the former for-

mula after Skolemization is seriously more 
omplex than the latter. The former

belongs to an unde
idable fragment of �rst-order logi
 while the latter belongs

to a de
idable one (see Se
tion 3.14).

Finally, the universal quanti�ers are removed. In a �rst-order logi
 CNF any

variable is universally quanti�ed by default. Furthermore, the variables of two

di�erent 
lauses are always assumed to be di�erent.

RemForall

�[8x: ℄

p

)

CNF

�[ ℄

p

The a
tual CNF is then done by distributivity.

PushDisj �[(�

1

^ �

2

) _  ℄

p

)

CNF

�[(�

1

_  ) ^ (�

2

_  )℄

p

Theorem 3.7.2 (Properties of the CNF Transformation). Let � be a �rst-order

senten
e, then

1. 
nf(�) terminates

2. � is satis�able i� 
nf(�) is satis�able

Proof. (Idea) 1. is a straightforward extension of the propositional 
ase. It is

easy to de�ne a measure for any line of Algorithm 6.

2. 
an also be established separately for all rule appli
ations. The rules SimpleR-

enaming and Skolemization need separate proofs, the rest is straightforward or


opied from the propositional 
ase.
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Algorithm 6: 
nf(�)

Input : A �rst-order formula �.

Output: A formula  in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB14(�)) do ;

2 RenVar(�);

3 SimpleRenaming(�) on obvious positions;

4 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

5 whilerule (ElimImp(�)) do ;

6 whilerule (PushNeg1(�),: : :,PushNeg5(�)) do ;

7 whilerule (MiniS
ope1(�),: : :,MiniS
ope4(�)) do ;

8 whilerule (Skolemization(�)) do ;

9 whilerule (RemForall(�)) do ;

10 whilerule (PushDisj(�)) do ;

11 return �;

C In addition to the 
onsideration of repeated subformulas, dis
ussed

in Se
tion 2.5, for �rst-order renaming another te
hnique 
an pay o�:

generalization. Consider the formula [�

1

_ (Q

1

(a

1

) ^Q

2

(a

1

))℄ ^ [�

2

_ (Q

1

(a

2

) ^

Q

2

(a

2

))℄^ : : :^ [�

n

_ (Q

1

(a

n

)^Q

2

(a

n

)℄. SimpleRenaming on obvious renamings

applied to this formula will independently rename any o

urren
es of a formula

(Q

1

(a

i

)^Q

2

(a

i

)). However generalization pays o� here. By adding the de�nition

8x; y (R(x; y) ! (Q

1

(x) ^ Q

2

(y))) and repla
ing the i

th

o

urren
e of the 
on-

jun
t by R(x; y)fx 7! a

i

; y 7! a

i

g one de�nition for all subformula o

urren
es

suÆ
es.

3.8 Herbrand Interpretations

For propositional logi
 the existen
e of a 
anoni
al model is straightforward

be
ause the de�nition of the semanti
s leads to an e�e
tive representation. A

propositional variable 
an be either true or false. For �rst-order logi
 this is no

longer straightforward be
ause an interpretation 
an assign any non-empty set

to a sort, any fun
tion to a fun
tion symbol and any relation to a predi
ate

symbol. A giant step forward towards the me
hanization of �rst-order logi


was the dis
overy of a 
anoni
al model 
onstru
tion by Herbrand. A �rst-order

formula has a model i� it has su
h a 
anoni
al model whi
h is build out of the

syntax.

For this and the following se
tion I restri
t the fo
us to �rst-order logi


without equality. Equality is then 
onsidered and added to the 
on
epts of this


hapter in Chapters ??, ??.

De�nition 3.8.1 (Herbrand Interpretation). A Herbrand Interpretation (over

�) is a �-algebra A so that

1. S

A

= T

S

(�) for every sort S 2 S
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2. f

A

: (s

1

; : : : ; s

n

) 7! f(s

1

; : : : ; s

n

) where f 2 
, arity(f) = n, s

i

2 T

S

i

(�)

and f : S

1

� : : :� S

n

! S is the sort de
laration for f

3. P

A

� (T

S

1

(�) � : : : � T

S

m

(�)) where P 2 �, arity(P ) = m and P �

S

1

� : : :� S

m

is the sort de
laration for P

In other words, values are �xed to be ground terms and fun
tions are �xed

to be the term 
onstru
tors. Only predi
ate symbols may be freely interpreted

as relations over ground terms.

Proposition 3.8.2. Every set of ground atoms I uniquely determines a Her-

brand interpretation A via

(s

1

; : : : ; s

n

) 2 P

A

i� P (s

1

; : : : ; s

n

) 2 I

Thus Herbrand interpretations (over �) 
an be identi�ed with sets of �-

ground atoms. A Herbrand interpretation I is 
alled a Herbrand model of �, if

I j= �.

Example 3.8.3. Consider the signature � = (fSg; fa; bg; fP;Qg), where a; b

are 
onstants, arity(P ) = 1, arity(Q) = 2, and all 
onstants, predi
ates are

de�ned over the sort S. Then the following are examples of Herbrand interpre-

tations over �, where for all interpretations S

A

= fa; bg.

I

1

: = ;

I

2

: = fP (a); Q(a; a); Q(b; b)g

I

3

: = fP (a); P (b); Q(a; a); Q(b; b); Q(a; b); Q(b; a)g

Now 
onsider the extension �

0

of � by one unary fun
tion symbol g : S ! S.

Then the following are examples of Herbrand interpretations over �

0

, where for

all interpretations S

A

= fa; b; g(a); g(b); g(g(a)); : : :g.

I

0

1

: = ;

I

0

2

: = fP (a); Q(a; g(a)); Q(b; b)g

I

0

3

: = fP (a); P (g(a)); P (g(g(a))); : : : ; Q(a; a); Q(b; b); Q(b; g(b)); Q(b; g(g(b))); : : :g

Theorem 3.8.4 (Herbrand). Let N be a set of �-
lauses. Then N is satis�able

i� N has a Herbrand model over � i� ground(�; N) has a Herbrand model

over �, where ground(�; N) = fC� j C 2 N; dom(�) = vars(C); and x� 2

T

sort(x)

(�) for all x 2 dom(�)g is the set of ground instan
es of N .

Example 3.8.5 (Example of a ground(�; N)). Consider �

0

from Example 3.8.3

and the 
lause set N = fQ(x; x) _ :P (x);:P (x) _ P (g(x))g. Then the set of

ground instan
es ground(�

0

; N) = f

Q(a; a) _ :P (a)

Q(b; b) _ :P (b)

Q(g(a); g(a)) _ :P (g(a))

: : :

:P (a) _ P (g(a))

:P (b) _ P (g(b))

:P (g(a)) _ P (g(g(a)))

: : :g
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is satis�able. For example by the Herbrand models

I

1

: = ;

I

2

: = fP (b); Q(b; b); P (g(b)); Q(g(b); g(b)); : : :g

3.9 Orderings

De�nition 3.9.1 (�-Operation Compatible Relation). A binary relation

A over T (�;X ) is 
alled 
ompatible with �-operations, if s A s

0

implies

f(t

1

; : : : ; s; : : : ; t

n

) A f(t

1

; : : : ; s

0

; : : : ; t

n

) for all f 2 
 and s; s

0

; t

i

2 T (�;X ).

Lemma 3.9.2. A relation A is 
ompatible with �-operations i� s A s

0

implies

t[s℄

p

A t[s

0

℄

p

for all s; s

0

; t 2 T (�;X ) and p 2 pos(t).

In the literature 
ompatible with �-operations is sometimes also 
alled 
om-

patible with 
ontexts.

De�nition 3.9.3 (Substitution Stable Relation, Rewrite Relation). A binary

relation A over T (�;X ) is 
alled stable under substitutions, if s A s

0

implies

s� A s

0

� for all s; s

0

2 T (�;X ) and substitutions �. A binary relation A is


alled a rewrite relation, if it is 
ompatible with �-operations and stable under

substitutions.

De�nition 3.9.4 (Lexi
ographi
al Path Ordering (LPO)). Let � = (S;
;�)

be a signature and let � be a stri
t partial ordering on operator symbols in 
,


alled pre
eden
e. The lexi
ographi
al path ordering �

lpo

on T (�;X ) is de�ned

as follows: if s; t are terms in T

S

(�;X ) then s �

lpo

t i�

1. t = x 2 X , x 2 vars(s) and s 6= t or

2. s = f(s

1

; : : : ; s

n

), t = g(t

1

; : : : ; t

m

) and

(a) s

i

�

lpo

t for some i 2 f1; : : : ; ng or

(b) f � g and s �

lpo

t

j

for every j 2 f1; : : : ;mg or

(
) f = g, s �

lpo

t

j

for every j 2 f1; : : : ;mg and (s

1

; : : : ; s

n

)(�

lpo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.5. 1. The LPO is a rewrite ordering.

2. If the pre
eden
e � is total on 
 then �

lpo

is total on the set of ground

terms T (�).

3. If 
 is �nite then �

lpo

is well-founded.

Example 3.9.6. Consider the terms g(x), g(y), g(g(a)), g(b), g(a), b, a. With

respe
t to the pre
eden
e g � b � a the ordering on the ground terms is

g(g(a)) �

lpo

g(b) �

lpo

g(a) �

lpo

b �

lpo

a. The terms g(x) and g(y) are not


omparable. Note that the terms g(g(a)), g(b), g(a) are all instan
es of both

g(x) and g(y).

With respe
t to the pre
eden
e b � a � g the ordering on the ground terms

is g(b) �

lpo

b �

lpo

g(g(a)) �

lpo

g(a) �

lpo

a.
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De�nition 3.9.7 (The Knuth-Bendix Ordering). Let � = (S;
;�) be a �nite

signature, let � be a stri
t partial ordering (\pre
eden
e") on 
, let w : 
 [

X ! R

+

0

be a weight fun
tion, so that the following admissibility 
onditions are

satis�ed:

1. w(x) = w

0

2 R

+

for all variables x 2 X ; w(
) � w

0

for all 
onstants 
 2 
.

2. If w(f) = 0 for some f 2 
 with arity(f) = 1, then f � g for all g 2 
.

Then, the weight fun
tion w 
an be extended to terms re
ursively:

w(f(t

1

; : : : ; t

n

)) = w(f) +

X

1�i�n

w(t

i

)

or alternatively

X

w(t) =

X

x2vars(t)

w(x) �#(x; t) +

X

f2


w(f) �#(f; t)

where #(a; t) is the number of o

urren
es of a in t.

The Knuth-Bendix ordering �

kbo

on T (�;X ) indu
ed by � and admissible

w is de�ned by: s �

kbo

t i�

1. #(x; s) � #(x; t) for all variables x and w(s) > w(t), or

2. #(x; s) � #(x; t) for all variables x, w(s) = w(t), and

(a) t = x, s = f

n

(x) for some n � 1, or

(b) s = f(s

1

; : : : ; s

m

), t = g(t

1

; : : : ; t

n

), and f � g, or

(
) s = f(s

1

; : : : ; s

m

), t = f(t

1

; : : : ; t

m

), and (s

1

; : : : ; s

m

)(�

kbo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.8. 1. The KBO is a rewrite ordering.

2. If the pre
eden
e � is total on 
 then �

kbo

is total on the set of ground

terms T (�).

3. If 
 is �nite then �

kbo

is well-founded.

The LPO ordering as well as the KBO ordering 
an be extended to atoms in

a straightforward way. The pre
eden
e � is extended to �. For LPO atoms are

then 
ompared a

ording to De�nition 3.9.4-2. For KBO the weight fun
tion w

is also extended to atoms by giving predi
ates a non-zero positive weight and

then atoms are 
ompared a

ording to terms.

A
tually, sin
e atoms are never substituted for variables in �rst-order logi
,

an alternative to the above would be to �rst 
ompare the predi
ate symbols and

let � de
ide the ordering. Only if the atoms share the same predi
ate symbol,

the argument terms are 
onsidered, e.g., in a lexi
ographi
 way and are then


ompared with respe
t to KBO or LPO, respe
tively.
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3.10 Ground Superposition

Propositional 
lauses and ground 
lauses are essentially the same, as long as

equational atoms are not 
onsidered. This se
tion deals only with ground 
lauses

and re
alls mostly the material from Se
tion 2.6 for �rst-order ground 
lauses.

Let N be a set of ground 
lauses.

De�nition 3.10.1 (Clause Ordering). Let � be a total stri
t rewrite ordering

on terms and atoms. Then � 
an be lifted to a total ordering �

L

on literals

by its multiset extension �

mul

where a positive literal P (t

1

; : : : ; t

n

) is mapped

to the multiset fP (t

1

; : : : ; t

n

)g and a negative literal :P (t

1

; : : : ; t

n

) to the mul-

tiset fP (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

)g. The ordering �

L

is further lifted to a total

ordering on 
lauses �

C

by 
onsidering the multiset extension of �

L

for 
lauses.

Proposition 3.10.2 (Properties of the Clause Ordering). (i) The orderings on

literals and 
lauses are total and well-founded.

(ii) Let C and D be 
lauses with P (t

1

; : : : ; t

n

) = jmax(C)j, Q(s

1

; : : : ; s

m

) =

jmax(D)j, where max(C) denotes the maximal literal in C.

1. If Q(s

1

; : : : ; s

m

) �

L

P (t

1

; : : : ; t

n

) then D �

C

C.

2. If P (t

1

; : : : ; t

n

) = Q(s

1

; : : : ; s

m

), P (t

1

; : : : ; t

n

) o

urs negatively in C but

only positively in D, then D �

C

C.

Eventually, as I did for propositional logi
, I overload � with �

L

and �

C

. So

if � is applied to literals it denotes �

L

, if it is applied to 
lauses, it denotes �

C

.

Note that � is a total ordering on literals and 
lauses as well. For superposition,

inferen
es are restri
ted to maximal literals with respe
t to �. For a 
lause set

N , I de�ne N

�C

= fD 2 N j D � Cg.

De�nition 3.10.3 (Abstra
t Redundan
y). A ground 
lause C is redundant

with respe
t to a ground 
lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed 
lauses are redundant if � is stri
t.

Dupli
ate 
lauses are anyway eliminated quietly be
ause the 
al
ulus operates

on sets of 
lauses.

C

Note that for �nite N , and any C 2 N redundan
y N

�C

j= C 
an

be de
ided but is as hard as testing unsatis�ability for a 
lause set

N . So the goal is to invent redundan
y notions that 
an be eÆ
iently

de
ided and that are useful.

De�nition 3.10.4 (Sele
tion Fun
tion). The sele
tion fun
tion sel maps 
lauses

to one of its negative literals or ?. If sel(C) = :P (t

1

; : : : ; t

n

) then :P (t

1

; : : : ; t

n

)

is 
alled sele
ted in C. If sel(C) = ? then no literal in C is sele
ted.

The sele
tion fun
tion is, in addition to the ordering, a further means to

restri
t superposition inferen
es. If a negative literal is sele
ted on a 
lause, any

superposition inferen
e must be on the sele
ted literal.
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De�nition 3.10.5 (Partial Model Constru
tion). Given a 
lause set N and an

ordering � we 
an 
onstru
t a (partial) model N

I

for N indu
tively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fP (t

1

; : : : ; t

n

)g if D = D

0

_ P (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

) stri
tly maximal, no literal

sele
ted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are 
alled produ
tive.

Proposition 3.10.6. Some properties of the partial model 
onstru
tion.

1. For every D with (C _:P (t

1

; : : : ; t

n

)) � D we have Æ

D

6= fP (t

1

; : : : ; t

n

)g.

2. If Æ

C

= fP (t

1

; : : : ; t

n

)g then N

C

[ Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in parti
ular N

I

j= D.

4. There is no 
lause C with P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) � C su
h that

Æ

C

= fPg.

T

Please properly distinguish: N is a set of 
lauses interpreted as the


onjun
tion of all 
lauses. N

�C

is of set of 
lauses from N stri
tly

smaller than C with respe
t to �. N

I

, N

C

are Herbrand interpreta-

tions (see Proposition 3.8.2). N

I

is the overall (partial) model for N , whereas

N

C

is generated from all 
lauses from N stri
tly smaller than C.

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (t

1

; : : : ; t

n

)g) )

SUP

(N [ fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (t

1

; : : : ; t

n

)g [ fC

1

_ C

2

g)

where (i) P (t

1

; : : : ; t

n

) is stri
tly maximal in C

1

_ P (t

1

; : : : ; t

n

) (ii) no literal in

C

1

_P (t

1

; : : : ; t

n

) is sele
ted (iii) :P (t

1

; : : : ; t

n

) is maximal and no literal sele
ted

in C

2

_ :P (t

1

; : : : ; t

n

), or :P (t

1

; : : : ; t

n

) is sele
ted in C

2

_ :P (t

1

; : : : ; t

n

)

Fa
toring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g) )

SUP

(N [ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g [ fC _ P (t

1

; : : : ; t

n

)g)

where (i) P (t

1

; : : : ; t

n

) is maximal in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) (ii) no

literal is sele
ted in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)

Note that the superposition fa
toring rule di�ers from the resolution fa
tor-

ing rule in that it only applies to positive literals.

De�nition 3.10.7 (Saturation). A set N of 
lauses is 
alled saturated up to

redundan
y, if any inferen
e from non-redundant 
lauses in N yields a redundant


lause with respe
t to N .
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Examples for spe
i�
 redundan
y rules that 
an be eÆ
iently de
ided are

Subsumption (N ℄ fC

1

; C

2

g) )

SUP

(N [ fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g) )

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg) )

SUP

(N [ fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg) )

SUP

(N [ fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 3.10.8. All 
lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respe
t to the

kept or added 
lauses.

Theorem 3.10.9. LetN be a, possibly 
ountably in�nite, set of ground 
lauses.

If N is saturated up to redundan
y and ? =2 N then N is satis�able and N

I

j=

N .

Proof. The proof is by 
ontradi
tion. So I assume: (i) for any 
lause D derived

by Superposition Left or Fa
toring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respe
t to �, 
lause

C_L 2 N su
h that N

I

6j= C_L and L is a sele
ted literal in C_L or no literal

in C _ L is sele
ted and L is maximal. This 
lause must exist be
ause ? =2 N .

The 
lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hen
e N

I

j= C _ L, be
ause N

I

j= N

�C_L

, a 
ontradi
tion.

I distinguish the 
ase L is a positive and no literal sele
ted in C _ L or L

is a negative literal. Firstly, assume L is positive, i.e., L = P (t

1

; : : : ; t

n

) for

some ground atom P (t

1

; : : : ; t

n

). Now if P (t

1

; : : : ; t

n

) is stri
tly maximal in

C _ P (t

1

; : : : ; t

n

) then a
tually Æ

C_P

= fP (t

1

; : : : ; t

n

)g and hen
e N

I

j= C _ P ,

a 
ontradi
tion. So P (t

1

; : : : ; t

n

) is not stri
tly maximal. But then a
tually C _

P (t

1

; : : : ; t

n

) has the form C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

) and Fa
toring derives

C

0

1

_P (t

1

; : : : ; t

n

) where (C

0

1

_P (t

1

; : : : ; t

n

)) � (C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

)).

Now C

0

1

_ P (t

1

; : : : ; t

n

) is not redundant, stri
tly smaller than C _ L, we have

C

0

1

_P (t

1

; : : : ; t

n

) 2 N and N

I

6j= C

0

1

_P (t

1

; : : : ; t

n

), a 
ontradi
tion against the


hoi
e that C _ L is minimal.

Se
ondly, let us assume L is negative, i.e., L = :P (t

1

; : : : ; t

n

) for some

ground atom P (t

1

; : : : ; t

n

). Then, sin
e N

I

6j= C _ :P (t

1

; : : : ; t

n

) we know

P (t

1

; : : : ; t

n

) 2 N

I

. So there is a 
lause D _ P (t

1

; : : : ; t

n

) 2 N where

Æ

D_P (t

1

;:::;t

n

)

= fP (t

1

; : : : ; t

n

)g and P (t

1

; : : : ; t

n

) is stri
tly maximal in D _

P (t

1

; : : : ; t

n

) and (D _ P (t

1

; : : : ; t

n

)) � (C _ :P (t

1

; : : : ; t

n

)). So Superposition

Left derives C _ D where (C _ D) � (C _ :P (t

1

; : : : ; t

n

)). The derived 
lause

C _ D 
annot be redundant, be
ause for otherwise either N

�D_P (t

1

;:::;t

n

)

j=
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D _ P (t

1

; : : : ; t

n

) or N

�C_:P (t

1

;:::;t

n

)

j= C _ :P (t

1

; : : : ; t

n

). So C _D 2 N and

N

I

6j= C _D, a 
ontradi
tion against the 
hoi
e that C _L is the minimal false


lause.

So the proof a
tually tells us that at any point in time we need only to


onsider either a superposition left inferen
e between a minimal false 
lause and

a produ
tive 
lause or a fa
toring inferen
e on a minimal false 
lause.

Theorem 3.10.10 (Compa
tness of First-Order Logi
). Let N be a, possibly

in�nite, set of �rst-order logi
 ground 
lauses. Then N is unsatis�able i� there

is a �nite subset N

0

� N su
h that N

0

is unsatis�able.

Proof. If N is unsatis�able, saturation via superposition generates ?. So there

is an i su
h that N )

i

SUP

N

0

and ? 2 N

0

. The 
lause ? is the result of at

most i many superposition inferen
es, redu
tions on 
lauses fC

1

; : : : ; C

n

g � N .

Superposition is sound, so fC

1

; : : : ; C

n

g is a �nite, unsatis�able subset of N .

Corollary 3.10.11 (Compa
tness of First-Order Logi
: Classi
al). A set N of


lauses is satis�able i� all �nite subsets of N are satis�able

Theorem 3.10.12 (Soundness and Completeness of Ground Superposition). A

�rst-order �-senten
e � is valid i� there exists a ground superposition refutation

for ground(�; 
nf(:�)).

Proof. A �rst-order senten
e � is valid i� :� is unsatis�able i� 
nf(:�) is unsat-

is�able i� ground(�; 
nf(:�)) is unsatis�able i� superposition provides a refu-

tation of ground(�; 
nf(:�)).

Theorem 3.10.13 (Semi-De
idability of First-Order Logi
 by Ground Super-

position). If a �rst-order �-senten
e � is valid then a ground superposition

refutation 
an be 
omputed.

Proof. In a fair way enumerate ground(�; 
nf(:�)) and perform superposition

inferen
e steps. The enumeration 
an, e.g., be done by 
onsidering Herbrand

terms of in
reasing size.

Example 3.10.14 (Ground Superposition). Consider the below 
lauses 1-4

and superposition refutation with respe
t a KBO with pre
eden
e P � Q �

g � f � 
 � b � a where the weight fun
tion w returns 1 for all signature

symbols. Maximal literals are marked with a

�

.

1: :P (f(
))

�

_ :P (f(
))

�

_Q(b) (Input)

2: P (f(
))

�

_Q(b) (Input)

3: :P (g(b; 
))

�

_ :Q(b) (Input)

4: P (g(b; 
))

�

(Input)

5: :P (f(
))

�

_Q(b) (Cond(1))

6: Q(b)

�

_Q(b)

�

(Sup(5; 2)))

7: Q(b)

�

(Fa
t(6))

8: :Q(b)

�

(Sup(3; 4))

10: ? (Sup(8; 7))
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Note that 
lause 5 
annot be derived by Fa
toring whereas 
lause 7 
an also be

derived by Condensation. Clause 8 is also the result of a Subsumption Resolution

appli
ation to 
lauses 3, 4.

Theorem 3.10.15 (Craig Theorem [14℄). Let � and  be two propositional

formulas so that � j=  . Then there exists a formula � (
alled the interpolant

for � j=  ), so that � 
ontains only propositional variables o

urring both in �

and in  so that � j= � and � j=  .

Proof. Translate � and : into CNF. let N and M , respe
tively, denote the

resulting 
lause set. Choose an atom ordering � for whi
h the propositional

variables that o

ur in � but not in  are maximal. Saturate N into N

�

w.r.t.

Sup

�

sel

with an empty sele
tion fun
tion sel. Then saturate N

�

[M w.r.t. Sup

�

sel

to derive ?. As N

�

is already saturated, due to the ordering restri
tions only

inferen
es need to be 
onsidered where premises, if they are from N

�

, only


ontain symbols that also o

ur in  . The 
onjun
tion of these premises is an

interpolant �. The theorem also holds for �rst-order formulas. For universal for-

mulas the above proof 
an be easily extended. In the general 
ase, a proof based

on superposition te
hnology is more 
ompli
ated be
ause of Skolemization.

3.11 First-Order Superposition with Sele
tion

The 
ompleteness proof of ground superposition (Se
tion 3.10) talks about

(stri
tly) maximal literals of ground 
lauses. The non-ground 
al
ulus 
onsiders

those literals that 
orrespond to (stri
tly) maximal literals of ground instan
es.

The used ordering is exa
tly the ordering of De�nition 3.10.1 where 
lauses

with variables are proje
ted to their ground instan
es for ordering 
omputations.

De�nition 3.11.1 (Maximal Literal). A literal L is 
alled [stri
tly℄ maximal

in a 
lause C if and only if there exists a grounding substitution � so that L�

is [stri
tly℄ maximal in C� (i.e., if for no other L

0

in C: L� � L

0

� [L� � L

0

�℄).

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (s

1

; : : : ; s

n

)g) )

SUP

(N [ fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (s

1

; : : : ; s

n

)g [ f(C

1

_ C

2

)�g)

where (i) P (t

1

; : : : ; t

n

)� is stri
tly maximal in (C

1

_ P (t

1

; : : : ; t

n

))� (ii) no

literal in C

1

_ P (t

1

; : : : ; t

n

) is sele
ted (iii) :P (t

1

; : : : ; t

n

)� is maximal and

no literal sele
ted in (C

2

_ :P (t

1

; : : : ; t

n

))�, or :P (t

1

; : : : ; t

n

) is sele
ted in

C

2

_ :P (t

1

; : : : ; t

n

) (iv) � is the mgu of P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)

Fa
toring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g) )

SUP

(N [ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g [ f(C _ P (t

1

; : : : ; t

n

))�g)

where (i) P (t

1

; : : : ; t

n

)� is maximal in (C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

))�

(ii) no literal is sele
ted in C _ P (t

1

; : : : ; t

n

)_ P (t

1

; : : : ; t

n

) (iii) � is the mgu of

P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)
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Note that the above inferen
e rules Superpositions Left and Fa
toring are

generalizations of their respe
tive 
ounterparts from Se
tion 3.10. On ground


lauses they 
oin
ide. Therefore, we 
an safely overload them in the sequel.

De�nition 3.11.2 (Abstra
t Redundan
y). A 
lause C is redundant with

respe
t to a 
lause set N if for all ground instan
es C� where are 
lauses

fC

1

; : : : ; C

n

g � N with ground instan
es C

1

�

1

; : : : ; C

n

�

n

su
h that C

i

�

i

� C�

for all i and C

1

�

1

; : : : ; C

n

�

n

j= C�.

De�nition 3.11.3 (Saturation). A set N of 
lauses is 
alled saturated up to

redundan
y, if any inferen
e from non-redundant 
lauses in N yields a redundant


lause with respe
t to N .

In 
ontrast to the ground 
ase, the above abstra
t notion of redundan
y is

not e�e
tive, i.e., it is unde
idable for some 
lause C whether it is redundant, in

general. Nevertheless, the 
on
rete redundan
y notions from Se
tion 3.10 
arry

over to the non-ground 
ase. Let dup be a fun
tion from 
lauses to 
lauses that

removes dupli
ate literals, i.e., dup(C) = C

0

where C

0

� C, C

0

does not 
ontain

any dupli
ate literals, and for ea
h L 2 C also L 2 C

0

.

Subsumption (N ℄ fC

1

; C

2

g) )

SUP

(N [ fC

1

g)

provided C

1

� � C

2

for some �

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g) )

SUP

(N)

Condensation

(N ℄ fC

1

_L_L

0

g) )

SUP

(N [ fdup((C

1

_L_L

0

)�)g)

provided L� = L

0

and dup((C

1

_ L _ L

0

)�) subsumes C

1

_ L _ L

0

for some �

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ L

0

g) )

SUP

(N [ fC

1

_ L;C

2

g)

where L� = :L

0

and C

1

� � C

2

for some �

Lemma 3.11.4. All redu
tion rules are instan
es of the abstra
t redundan
y


riterion

Lemma 3.11.5 (Subsumption is NP-
omplete). Subsumption is NP-
omplete.

Proof. Let C

1

subsume C

2

with substitution � Subsumption is in NP be
ause

the size of � is bound by the size of C

2

and the subset relation 
an be 
he
ked

in time at most quadrati
 in the size of C

1

and C

2

.

Propositional SAT 
an be redu
ed as follows. Assume a 3-SAT 
lause set

N . Consider a 3-pla
e predi
ate R and a unary fun
tion g and a mapping from

propositional variables P to �rst order variables x

P

. : : :

Lemma 3.11.6 (Lifting). Let D_L and C_L

0

be variable-disjoint 
lauses and

� a grounding substitution for C _L and D _L

0

. If there is a superposition left

inferen
e

(N ℄ f(D _ L)�; (C _ L

0

)�g))

SUP

(N [ f(D _ L)�; (C _ L

0

)�g [ fD� _ C�g)
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and if sel((D _ L)�) = sel((D _ L))�, sel((C _ L

0

)�) = sel((C _ L

0

))� , then

there exists a mgu � su
h that

(N ℄ fD _ L;C _ L

0

g))

SUP

(N [ fD _ L;C _ L

0

g [ f(D _ C)�g):

Let C _ L _ L

0

be variable-disjoint 
lauses and � a grounding substitution

for C _ L _ L

0

. If there is a fa
toring inferen
e

(N ℄ f(C _ L _ L

0

)�g))

SUP

(N [ f(C _ L _ L

0

)�g [ f(C _ L)�g)

and if sel((C _ L _ L

0

)�) = sel((C _ L _ L

0

))� , then there exists a mgu � su
h

that

(N ℄ fC _ L _ L

0

g))

SUP

(N [ fC _ L _ L

0

g [ f(C _ L)�g)

Note that in the above lemma the 
lause D�_C� is an instan
e of the 
lause

(D _C)� The redu
tion rules 
annot be lifted in the same way as the following

example shows.

Example 3.11.7 (First-Order Redu
tions are not Liftable). Consider the two


lauses P (x) _ Q(x), P (g(y)) and grounding substitution fx 7! g(a); y 7! ag.

Then P (g(y))� subsumes (P (x)_Q(x))� but P (g(y)) does not subsume P (x)_

Q(x). For all other redu
tion rules similar examples 
an be 
onstru
ted.

Lemma 3.11.8 (Soundness and Completeness). Superposition is sound and


omplete.

Proof. Soundness is obvious. For 
ompleteness, Theorem 3.10.12 proves the

ground 
ase. Now by applying Lemma 3.11.6 to this proof it 
an be lifted to the

�rst-order level.

There are questions left open by Lemma 3.11.8. It just says that a ground

refutation 
an be lifted to a �rst-order refutation. But what about abstra
t

redundan
y, De�nition 3.11.2? Can �rst-order redundant 
lauses be deleted

without harming 
ompleteness? And what about the ground model operator

with respe
t to 
lause sets N saturated on the �rst order level. Is in this 
ase

ground(�; N)

I

a model? The next two lemmas answer these questions positively.

Lemma 3.11.9 (Redundant Clauses are Obsolete). If a 
lause set N is unsat-

is�able, then there is a derivation N )

�

SUP

N

0

su
h that ? 2 N

0

and no 
lause

in the derivation of ? is redundant.

Proof. If N is unsatis�able then there is a ground superposition refutation of

ground(�; N) su
h that no ground 
lause in the refutation is redundant. Now

a

ording to Lemma 3.11.8 this proof 
an be lifted to the �rst-order level. Now

assume some 
lause C in the �rst-order proof is redundant that is the lifting of

some 
lause C� from the ground proof with respe
t to a grounding substitution

�. The 
lause C is redundant by De�nition 3.11.2 if all its ground instan
es are,

in parti
ular, C�. But this 
ontradi
ts the fa
t that the lifted ground proof does

not 
ontain redundant 
lauses.
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Lemma 3.11.10 (Model Property). If N is a saturated 
lause set and ? 62 N

then ground(�; N)

I

j= N .

Proof. As usual we assume that sele
tion on the ground and respe
tive non-

ground 
lauses is identi
al. Assume ground(�; N)

I

6j= N . Then there is a min-

imal ground 
lause C�, C 6= ?, C 2 N su
h that ground(�; N)

I

6j= C�.

Note that C� is not redundant as for otherwise ground(�; N)

I

j= C�. So

ground(�; N) is not saturated. If C� is produ
tive, i.e., C� = (C

0

_ L)� su
h

that L is positive, L� stri
tly maximal in (C

0

_ L)� then L� 2 ground(�; N)

I

and hen
e ground(�; N)

I

j= C� 
ontradi
ting ground(�; N)

I

6j= C�.

If C� = (C

0

_L_L

0

)� su
h that L is positive, L� maximal in (C

0

_L_L

0

)�

then, be
ause N is saturated, there is a 
lause (C

0

_ L)� 2 N su
h that (C

0

_

L)�� = (C

0

_L)�. Now (C

0

_L)� is not redundant, ground(�; N)

I

6j= (C

0

_L)� ,


ontradi
ting the minimal 
hoi
e of C�.

If C� = (C

0

_L)� su
h that L is sele
ted, or negative and maximal then there

is a 
lause (D

0

_L

0

) 2 N and grounding substitution �, su
h that L

0

� is a stri
tly

maximal positive literal in (D

0

_ L

0

)�, L

0

� 2 ground(�; N)

I

and L

0

� = :L�.

Again, sin
e N is saturated, there is variable disjoint 
lause (C

0

_ D

0

)� 2 N

for some uni�er � , (C

0

_ D

0

)��� � C�, and ground(�; N)

I

6j= (C

0

_ D

0

)���


ontradi
ting the minimal 
hoi
e of C�.

De�nition 3.11.11 (Persistent Clause). Let N

0

)

SUP

N

1

)

SUP

: : : be a,

possibly in�nite, superposition derivation. A 
lause C is 
alled persistent in this

derivation if C 2 N

i

for some i and for all j > i also C 2 N

j

.

De�nition 3.11.12 (Fair Derivation). A derivation N

0

)

SUP

N

1

)

SUP

: : : is


alled fair if for any persistent 
lause C 2 N

i

where fa
toring is appli
able to

C, there is a j su
h that the fa
tor of C

0

2 N

j

or ? 2 N

j

. If fC;Dg � N

i

are

persistent 
lauses su
h that superposition left is appli
able to C, D then the

superposition left result is also in N

j

for some j or ? 2 N

j

.

Theorem 3.11.13 (Dynami
 Superposition Completeness). If N is unsatis�-

able and N = N

0

)

SUP

N

1

)

SUP

: : : is a fair derivation, then there is ? 2 N

j

for some j.

Proof. If N is unsatis�able, then by Lemma 3.11.8 there is a derivation of ?

by superposition. Furthermore, no 
lause 
ontributing to the derivation of ? is

redundant (Lemma 3.11.9). So all 
lauses in the derivation of ? are persistent.

The derivation N

0

)

SUP

N

1

)

SUP

: : : is fair, hen
e ? 2 N

j

for some j.

Lemma 3.11.14. Let red(N) be all 
lauses that are redundant with respe
t to

the 
lauses in N and N , M be 
lause sets. Then

1. if N �M then red(N) � red(M)

2. if M � red(N) then red(N) � red(N nM)

It follows that redundan
y is preserved when, during a theorem proving

pro
ess, new 
lauses are added (or derived) or redundant 
lauses are deleted.

Furthermore, red(N) may in
lude 
lauses that are not in N .
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Algorithm 7: SupProver(N)

Input : A set of 
lauses N .

Output: A saturated set of 
lauses N

0

, equivalent to N .

1 WO := ;;

2 US := N ;

3 while (US 6= ; and ? 62 US) do

4 Given:= pi
k a 
lause from US;

5 WO :=WO [ fGiveng;

6 New := SupLeft(WO,Given) [ Fa
t(Given);

7 while (New 6= ;) do

8 Given:= pi
k a 
lause from New;

9 if (!TautDel(Given)) then

10 if (!SubDel(Given,WO [US)) then

11 Given:= Cond(Given);

12 Given:= SubRes(Given,WO);

13 WO:= SubDel(WO,Given);

14 US:= SubDel(US,Given);

15 New:= New [ SubRes(WO [US,Given);

16 US:= US [ fGiven g;

17

18

19 end

20 end

21 return WO;


