60 CHAPTER 2. PROPOSITIONAL LOGIC

problem state (M; N;U; j;C) if k is the maximal level of a literal in D. Recall
C'is a non-empty clause or T or L. The rules are

Propagate (M; N;U;k; T) =cpcr, (MLEVE, N, U;k;T)
provided CV L € (NUU), M | —=C, and L is undefined in M

Decide (M;N;U;k;T) =cpcr (ML, N;U;k+1;7T)
provided L is undefined in M

Conflict (M;N;U;k;T) =cper, (M;N;U;k; D)
provided D € (NUU) and M |=-D

Skip (MLCVE; N;U; k; D) =cpcr, (M;N;U;k; D)
provided D ¢ {T, L} and =L does not occur in D

Resolve (MLYV";N;U;k; DV -L) =cpeL (M;N;U;k; DV C)
provided D contains a literal of level k£ or £ =0

For rule Resolve we assume that duplicate literals in D V C' are always re-
moved.

Backtrack (M;K™#'My; N;U;k;DV L) =cper. (M{LPVE;N;U U {D Vv
L};i;T)

provided L is of maximal level k in D V L and D is of level i, where i < k.

Restart (M;N;U;k;T) =cpcrn (6, N;U;0;T)
provided M £ N

Forget (M;N;UU{C};k;T) =cper (M;N;U;k;T)
provided M [N

Here L denotes the empty clause, hence fail. The level of the empty clause
1 is 0. The clause DV L added in rule Backtrack to U is called a learned clause.
The CDCL algorithm stops with a model M if neither Propagate nor Decide nor
Conflict are applicable to a state (M; N;U; k; T), hence M | N and all literals
of N are defined in M. The only possibility to generate a state (M; N;U; k; L) is
by the rule Resolve. So in case of detecting unsatisfiability the CDCL algorithm
actually generates a resolution proof as a certificate. I will discuss this aspect
in more detail in Section 2.11. In the special case of a unit clause L, the rule
Propagate actually annotates the literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of
reasons. For example, starting with (e; N;(;0; T) a simple combination Propa-
gate, Decide and eventually Restart yields the start state again. Even after a
successful application of Backtrack, exhaustive application of Forget followed
by Restart again produces the start state. So why these rules? Actually, any
modern SAT solver is based on this rule set and the underlying mechanisms. I
will motivate the rules later on and how they are actually used in an efficient
way.

2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 61

Example 2.9.1 (CDCL Strategy I). Consider the clause set N = {PVQ,-PV
@,—Q} which is unsatisfiable. The below is a CDCL derivation proving this
fact. The chosen strategy for CDCL rule selection produces a lengthy proof.
(& N;0;0;T)

=058 (P N;0;1;T)

=onar (P1=Q% Ni0;2;T)

=cepir’ (P'=Q% N;0;2,~PV Q)

=B (PrQ™PYO N {-PV QY1 T)

SR (P1Q P NPV Q) 15-Q)

=SCBE (-Q7Y N {=PV Q,=Q};0; T)

=ohar (FQTCPLN{-PVQ,-Q}1;T)

=epir’ (FQTPL N {-PVQ,=Q};1;-PV Q)

S OB (-QT9=PTPVR N {=PV Q,-Q};0; T)

SR (20 9P PV N =PV Q,=Q};0; PV Q)

=S0per® (FQYU N {-PVQ,-Q};0;Q)

=0per® (6N {=PVQ,~Q};0; 1)

Example 2.9.2 (CDCL Strategy II). Consider again the clause set N = {PV
Q,-PV Q,-Q} from Example 2.9.1. For the following CDCL derivation the
rules Propagate and Conflict are preferred over the other rules.

(6 N;0;0;T)
=Seper (~QYN; 050, T)
Soper T (FQTIPEYEIN; 0,0, T)
SERAT (FQTOPYEIN;0;0,-PV Q)
=ers (CQTYN;0;0,Q)

(

:,fc‘gsglge e N;0;0; 1)

In an implementation the rule Conflict is preferred over the rule Prop-
agate and both over all other rules. Exactly this strategy has been
used in Example 2.9.2 and is called reasonable below. A further in-

gredient is a dynamic heuristic which literal is actually used by the rule Decide.

This heuristic typically depends on the usage of literals by the rule Resolve, i.e.,
literals used in Resolve “get a bonus”.

Definition 2.9.3 (Reasonable CDCL Strategy). A CDCL strategy is reasonable
if Conflict is always preferred over rule Propagate is always preferred over all
other rules.

Proposition 2.9.4 (CDCL Basic Properties). Consider a CDCL state
(M;N;U;k;C) derived by a reasonable strategy from start state (e, N,0,0,T)
without using the rules Restart and Forget. Then the following properties hold:

1. M is consistent.

2. All learned clauses are entailed by N.

62 CHAPTER 2. PROPOSITIONAL LOGIC

3. IfC ¢ {T, L} then M | -C.

4. If C =T and M contains only propagated literals then for each valuation
A with A |= N it holds that A = M.

5. If C = T, M contains only propagated literals and M |= —D for some
D € (NUU) then N is unsatisfiable.

6. If C = L then CDCL terminates and N is unsatisfiable.
7. Each infinite derivation
(6, N;0;0; T) =cper (My; N;Urski; Di) =cepet - - -
contains an infinite number of Backtrack applications.

8. CDCL never learns the same clause twice if Conflict selects the smalles
clause out of NUU.

Proof. 1. M is consistent if it does does not contain L and —L at the same time.
The rules Propagate, Decide only add undefined literals to M. By an inductive
argument this holds also for Backtrack as it just removes literals from M and
flips one literal already contained in M.

2. A learned clause is a always a resolvent of clauses from N UU and even-
tually added to U where U is initially empty. By soundness of resolution (The-
orem 2.6.1) and an inductive argument it is enatailed by N.

3. A clause C ¢ {T,L} can only occur after Conflict where M [-C.
The rule Skip does not change C' and only deletes propagated literals from M
that are not contained in C. By an inductive argument, if the rule Resolve is
applied to a state (M’LDIVL; N;U;k; DV —L) where C = D V =L resulting in
(M';N;U; k; DV D') then M’ |= =D because M' | =C and M' |= =D’ because
L was propagated with respect to M’ and D'V L.

4. Proof by induction on the number n of propagated literals in M. Let
M =Ly,..., Ly, Lyy1. There are two rules that could have added L, +1. (i) rule
Propagate: in this case there is a clause C = DV L, ;1 where L, ;1 was unde-
fined in M and M | —D. By induction hypothesis for each valuation A with
A = N it holds that A(L;) = 1 for all i € {1,...,n}. Since all literals in D
appear negated in M with the induction hypothesis it holds that all those liter-
als must have the truth value 1 in any valuation A. Therefore, for the clause C
to be true L,41 must be true as well in any valuation. It follows that for each
valuation A it holds that A(L;) = 1 for all 4 € {1,...,n + 1}. (ii) rule Back-
track: the state (MK My; N;U; k; DV LE ;) where M = =(DVLE,) (with
Proposition 2.9.4-3) and M; = L, ... L,, with only propagated literals becomes

(MlLfJ\r/lL"“;N; U;i; T). With the induction hypothesis for each valuation A

with A = N it holds that A(L;) =1 for all 1 <4 <mn i.e. in particular it holds
that for each literal L in D A(L) = 0 since each literal in D appears negated in

M. Thus, for each each valuation A with A E N A(L,+1) = 1 holds.

2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 63

5. Since M = —D it holds that —=K; € M for all 1 < i < m. With Propo-
sition 2.9.4-4 for each valuation A with A |= N it holds that A(L;) = 1 for
all 1 < j < n. Thus in particular it holds that A(-=K;) =1 for all 1 <i < m.
Therefore D is always false under any valuation 4 and N is always unsatisfiable.

6. By the definition of the rules the state (M; N;U; k; L) can only be reached
if the rule Conflict has been applied to set some conflict clause C' of a state
(M'";N;U; k;T) as the last component and Resolve is used in the last rule
application to derive L. Before the last call of Resolve the state had the following
form (M L*VE; N;U; k; L) otherwise L could not be derived. M cannot contain
any decision literal because L is a propagated literal and due to the strategy
the rule Propagate is applied before the rule Decide. With Proposition 2.9.4-5
it follows that IV is unsatisfiable.

7. Proof by contradiction. Assume Backtrack is applied only finitely often
in the infinite trace. Then there exists an i € N* with R; # Backtrack for all
j > i. Propagate and Decide can only be applied as long as there are undefined
literals in M. Since there is only a finite number of propositional variables they
can only be applied finitely often.

By definition the application of the rules Skip, Resolve and Backtrack is
preceded by an application of the rule Conflict since the initial state has a
T as the last component and Conflict is the only rule that replaces the last
component by a clause. For the rule Conflict to be applied infinitely often the
last component has to change to T. By definition that can only be performed
by the rules Resolve and Backtrack (a contradiction to the assumption). For
Resolve assume the following rule application (M LEVE; N;U; k: DV-L) =cper
(M;N;U;k;DV C). For DV C = T there must be a literal K with K,-K €
(D v C). With Proposition 2.9.4-3 M = —=(D Vv C) holds which is equivalent
to M | L,a contradiction because of Proposition 2.9.4-1. Therefore Conflict is
applied finitely often.

Skip and Resolve are also applied finitely often since Conflict is applied
finitely often and they cannot be applied infinitely often interchangeably. Oth-
erwise the first component M has to be of infinite length, a contradiction.

8. By Proposition 2.11.4. ([l

Lemma 2.9.5. Assume the algorithm CDCL with all rules is applied using
the strategy eager application of Conflict and Propagate where Conflict is ap-
plied before Propagate. The CDCL algorithm has only 2 termination states:
(M;N;U;k;T) where M |= N and (M;N;U;k; L) where N is unsatisfiable.

Proof. Let the CDCL algorithm terminate in a state (M; N;U;k;¢) starting
from the initial state (e; N;0;0; T).

1. Let ¢ = L. No rule can be applied and (M; N;U;k; 1) is indeed a termi-

nation state. With Proposition 2.9.4-6 it also holds that N is unsatisfiable.

2. Let ¢ = T and M = N. Then the algorithm found a total valuation M
for N and no literal in N is undefined in M (otherwise we could apply

64 CHAPTER 2. PROPOSITIONAL LOGIC

Decide, contradicting that the algorithm terminated). Since M = N there
can also be no conflict clause D. Hence, no further rule can be applied and
the state (M; N;U;k; T) where M |E= N is a termination state.

3. Let ¢ = T and M = N does not hold. Since M = N does not hold there is
either a clause D € N with M |= =D or there is no such clause D but there
is a literal in N that is undefined in M. For the first case the rule Conflict
is applicable and for the second case the rule Decide is applicable. Thus,
for both cases it holds that (M; N;U;k; T) is not a termination state, a
contradiction.

4. Let ¢ be a clause C' = DV L. With Proposition 2.9.4-3 the clause C' must
be a conflicting clause where M = =C.

If the rightmost literal in M is a propagated literal then the rules Skip or
Resolve are applicable if their conditions are satisfied. This would contra-
dict that the algorithm terminated. The case that the conditions are not
satisfied is handled in a similar way as the decided literal case.

If the rightmost literal is a decision literal L then L is contained in C'. This
is due to the fact that with the assumed strategy before deciding literal L
(via the rule Decide) neither Propagate nor Conflict were applicable. Thus,
L is of maximal level k and the remaining part of C' can only be of a level
1 with ¢ < k. The same holds for the case that the rightmost literal is a
propagated literal but D does not contain a literal of level k and Skip is also
not applicable. Then D must again be of a level i with i < k and L must be
the literal of level k in C' (otherwise, due to the strategy, the rule Conflict
would have been called before the rule Propagate and the rightmost literal
in M could not be the propagated literal L). Therefore, in both cases the
rule Backtrack is applicable, contradicting that the algorithm terminated.

O

Proposition 2.9.6 (CDCL Soundness). Assume the algorithm CDCL with all
rules is applied using the strategy eager application of Conflict and Propagate
where Conflict is applied before Propagate. The rules of the CDCL algorithm are
sound, i.e. whenever the algorithm terminates in state (M; N;U;k; ¢) starting
from the initial state (e; N;0; 0; T) then it holds that M |= N iff N is satisfiable.

Proof. (=) if M |= N and M is consistent with Proposition 2.9.4-1 then N is
satisfiable.

(<) Proof by contradiction. Assume N is satisfiable and the algorithm ter-
minates in state (M;N;U;k;¢) starting from the initial state (e; N;0;0;T).
Furthermore, assume M = N does not hold. With Lemma 2.9.5 there are only
2 termination states, i.e. ¢ can only be T or L.

Case ¢ = T then by Lemma 2.9.5 M = N. This is a contradiction to the
assumption that M = N does not hold.

Case ¢ = L then by Lemma 2.9.5 N is unsatisfiable. This is a contradiction
to N being satisfiable. O

2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 65

Therefore all rules of the CDCL algorithm are sound.

Proposition 2.9.7 (CDCL Completeness). The CDCL rule set is complete: for
any valuation M with M = N there is a sequence of rule application generating
(M;N;U;k;T) as a final state.

Proof. Let M = LiLs...Lj. Since M is a valuation there are no duplicates
in M and k applications of rule Decide yield (L1L3...LK; N;0;k; T) out of
(e;N;0;0; T). Since M | N this is a final state and all literals from N are
defined in M. The rules Propagate and Decide cannot be applied anymore and
there is no conflict because M |= N. Therefore Conflict, Skip, Resolve and
Backtrack are not applicable. The rule Forget is not applicable since U = () and
there is no need to restart. [l

As an alternative proof of Proposition 2.9.7 the strategy of an alter-
nation of an exhaustive application of Propagate and one application
of Decide produces (M;N;0;i;T) as a final state where M = N.

As in the proof of Proposition 2.9.7 let M = LiLs...Ly;. First apply Prop-
agate m-times exhaustively resulting in (Lj...Ly,; N;0;0; T) where m < k.
With Proposition 2.9.4-4 the literals L, ... L,, must be true in any valuation
A with A = N. Thus, if m = k then (Ly...L,;N;0;0;T) is a final state
and M = N. If m < k then apply Decide once on a literal from M resulting
in (Ly...Lp,LY; N;0;1;T). Since L! is contained in M it must be true. This
strategy can be applied equivalently to all further literals in M resulting in the
desired state.

Proposition 2.9.8 (CDCL Termination). Assume the algorithm CDCL with
all rules except Restart and Forget is applied using the strategy eager application
of Conflict and Propagate where Conflict is applied before Propagate. Then it
terminates in a state (M; N;U;k; D) with D € {T, L}.

Proof. Proof by contradiction. Assume there is an infinite trace that starts in a
state (M'; N;U'; k'; D'). With Proposition 2.9.4-?? and 2.9.4-8 there can only be
a finite number of clauses that are learned during the infinite run. By definition
of the rules only the rule Backtrack causes that a clause is learned so that the
rule Backtrack can only be applied finitely often. But with Proposition 2.9.4-7
the rule Backtrack must be applied infinitely often, a contradiction. Therefore
there does not exist an infinite trace, i.e. the algorithm always terminates under
the given assumptions. O

The CDCL rule set does not in general terminate. This is due to the rules
Restart and Forget. If they are applied only finitely often then the algorithm
terminates. At some point the last application of Restart and Forget was reached
since they are only applied finitely often. From this point onwards Proposition
2.9.8 can be applied and the algorithm eventually terminates.

66 CHAPTER 2. PROPOSITIONAL LOGIC

Example 2.9.9 (CDCL Termination I). Consider the clause set N = {PV
Q,-P V @Q,-Q}. The CDCL algorithm does not terminate due to the rule
Restart.

(€, N;0;0;T)

:Eggigate (=Q™9; N;0;0; T)
U (2QQPAYPLN:0:0:T)
SRestart (¢ N3 (;0;T)
Seper (<Q7N;0;05T)
SORREte (2Q™PRVP N ;0;T)
=>08EY (6 N;0;0;T)

=CDCL

Example 2.9.10 (CDCL Termination IT). Consider the clause set N = {=PV
QV-R,-PVQV R}. The CDCL algorithm does not terminate due to the rule
Forget.

(6;N;0;0;T)
SBEH (PRNLT)
= Decide (P! ﬁQQ N;0;2;T)
igg)gigate (P —|Q2—|R_'PVQV_'R; N; @; 2; T)
=Genflict (P1-Q?-R™PVQVTE, N (;2;-PV Q V R)
SResolve (P1oQ2; N; @,2,—|PVQ)
=SB (PENHP Y QE LT
gt (PY; N;0;1;T)
SBEAE (Pl N2 T)
=S opopasate (pt ﬁQ%RﬂPVQVﬁR;N;w;z;T)
= &onflict (P'-Q*-R™PVRV-E. N ();2: =PV Q V R)
=cDCL

As an alternative for the proof of Proposition 2.9.8 the termination
can be shown by assigning a well-founded measure y and proving that
it decreases with each rule application except for the rules Restart and

Forget. Let n be the number of propositional variables in V. The domain for
the measure g is N x {0,1} x N.

(3”—1—|U|,1,n—|M|) aD:T

M((M;N;U;k;D)):{ (3" =1 -|UJ,0,|M]) yelse

The well-founded ordering is the lexicographic extension of < to triples.
What remains to be shown is that each rule application except Restart and
Forget decreases p. This is done via a case analysis over the rules:

2.10. IMPLEMENTING CDCL 67

Propagate:
p((M;N;Us ks T)) = (3" = 1= |U[, 1,n — [M])

(38" — 1 — U], 1,n — |MLOVE))

p(MLEVE N U k5 T))

v I

Decide:

p((M;N;U B T)) = (3" =1 |U|,1,n — |M])
(3" —1— |U|,1,n — |[ML*1))
p((MLE N U K T))

IIAVARI

Conflict:

p(M;N;U;k;T)) = (3" =1 —=|U|,1,n — |M])
(3n -1- |U|707 |M|)
u((M; N;U; k; D))

v I

Skip:

p(MLEVE; N U k; D)) = (3" — 1 — |U],0, |[MLEVE))
(3n -1- |U|a07 |M|)
w((M;N;U; k; D))

v I

Resolve:

p(MLEVE N3 Us ks DV =L)) = (3" = 1 = |U|,0,|[MLEVE)
> (3n -1- |U|a07|M|)
=u((M;N;U;k;DV C))

Backtrack: with Proposition 2.9.4-8 it holds that DV L ¢ U so that the first
component decreases.

u((MyK™ My; N;Us k; DV L)) = (3™ =1 = |UJ,0,| My K™ My))
(3" —1— [UU{DV L}|,1,n— |M;LPVE|

p((M{LPVE N;UU{DV L};i; T))

IIAVARI

2.10 Implementing CDCL

For an effective CDCL implementation the underlying data structure of the im-
plementation plays a crucial part. The technique that proved to be very success-
ful in modern SAT solvers and that is also used in a CDCL implementation is the
2-watched literals data structure. For choosing the decision variables a special
heuristic plays an important role in the implementation as well. This heuris-
tic is called VSIDS (Variable State Independent Decaying Sum) that works on
natural numbers. Furthermore, the decision for choosing the most reasonable
clause to be learned after a discovered conflict is handled by the notion of UIPs
(Unique Implication Points). In the following these main concepts (2-watched
literals, VSIDS and 1UIP scheme) will be introduced in accordance with the
CDCL rule set.

68 CHAPTER 2. PROPOSITIONAL LOGIC

: P R clause
e * R clauses with P
P
e R clauses with =P
. Q | =P clause

Figure 2.10: The watched literals list with the variables P, @, R and the watched
literals P, R and =P, Q.

2.10.1 Lazy Data Structure: 2-Watched Literals (2WL)

For applying the rule Propagate, the number of literals in each clause that are
not false need to be known. Maintaining this number is expensive, however,
since it has to be updated whenever Backtrack is applied. Therefore, the better
approach is to use a more efficient representation called 2-watched literals. A
list as represented in Figure 2.10 has references for each variable P to clauses
where P occurs positive and references to clauses where P occurs negative. A
variable is either unassigned, true or false. For each clause within the clause list
2 watched (unassigned) variables are maintained. The way of working with the
watched literals is as follows:

1. Let an unassigned variable P be set to false (or true).
2. Visit all clauses in which P (or =P) is watched.

3. In every clause where P (or —P) is watched find an unwatched and non-
falsified variable to be watched. If there is no other unassigned or true
variable then this clause is either a unit clause and the rule Propagate can
be applied or there is a conflict and the rule Backtrack is applied or the
clause set is already satisfied.

An advantage of the data structure as shown in the example below is no
extra cost for variables that are not watched (but assigned false).

As an example consider the formula ¢ = {-PVQV-RV-SVT,-PVQV
-T,RVT,SVT}. Figure 2.13 shows how to derive unit clauses and finally satisfy
the formula within the watched literals data structure. The watched literals are
the first two entries in a clause. The trail (see next section on Backtracking)
represents the assigned literals for the current state.

2.10. IMPLEMENTING CDCL

-P| Q | AT
o—— NULL
P
{94
-P| Q@ |-R|-S| T

(a) Initialized 2WL data structure for the literal P and the current

trail is empty.

=T Q -P
e——— NULL
P
g %]
-R| Q |-P|-S| T

(b) After deciding P the watched literals have changed and the cur-

rent trail is: P.

=T Q —-P
o——— NULL
P
T
-R| T |-P|-=S| @

(c) After deciding —@Q the unit clause {=P V QV =T} is achieved and

the current trail is: P, —Q).

70 CHAPTER 2. PROPOSITIONAL LOGIC

-T | Q | =P

o— NULL

o]

“R|-S|-P| T | Q

(d) After propagating —T,R and S the current trail is:
P,-Q,—T, R, S and the clause {=PV QV =RV -SV T} evaluates to
false, a conflict.

-T | Q | =P

o— NULL

o]

“R|-S|-P| T | Q

(e) After backtracking S, R, T, @ the current trail is: P.

-T | Q | =P

o—— NULL

{9]

-R| T |-P|=S| @

(f) After propagating @ and deciding S the trail is: P, @, S.

2.10. IMPLEMENTING CDCL 71

-T | Q | =P

o—— NULL

e []

-R| Q |-P| -S| T

(g) After deciding =T and propagating R the trail is: P, @, S, T, R.

Figure 2.13: The watched literals list for the formula ¢ = {-PVQV-RV-SV
T,-PVQV-T,RVT,SVT} before and after deciding / propagating variables
with a focus on the literal P.

2.10.2 Backtracking

Another main advantage of the 2-watched literals data structure is discovered
when considering backtracking. For this purpose a trail, a decision level and a
control stack are maintained together with the watched literals data structure.
The trail is a stack of variables that stores the order in which the variables
are assigned. The decision level counts the number of calls of the rule Decide.
The control stack stores the trail height for each decision level, i.e. once Decide
is applied the control stack increases by one entry and saves the height of the
previous trail stack.

If the rule Backtrack is applied the trail height entry from the control stack is
taken and every variable from that trail height on will be unassigned, i.e. every
assignment value that was made since the last application of the rule Decide is
deleted. A detailed example is shown in Figure 2.14. Again, the advantage with
the watched literals data structure is that the watched variables stay unchanged
and will not be considered by this backtracking step.

2.10.3 Dynamic Decision Heuristic: VSIDS

Choosing the right unassigned variable to decide is important for efficiency, but
the heuristic may be expensive itself. Therefore, the aim is to use a heuristic
that needs not to be recomputed too often, that for example chooses variables
which occur frequently and prefers variables from recent conflicts.

The VSIDS (Variable State Independent Decaying Sum) is such a heuristic.
The strategy is as follows:

1. Initially assign each variable a score e.g. its number of occurrences in the
formula.

72 CHAPTER 2. PROPOSITIONAL LOGIC

5 6
o] (o] 2] L] (2] [2] [o] [2]

decision control trail decision control trail decision control trail
level stack level stack level stack
(a) The initial entries. (b) After deciding P. (c) After deciding —Q.
R
5|

s
Ol 0
3] [[nEnEn

decision control trail decision control trail
level stack level stack
(d) After propagating =T, S and —-R. (e) After backtracking.

Figure 2.14: The entries for decision level, control stack and trail for the formula
p={SVQ,PVQ,~PVRV~-S-PV-RVT -PVQV-T}

2. Adjust the scores during a CDCL run: whenever a conflict clause is re-
solved with another clause the resolved variable gets its score increased by
a bonus d, initially d = 1 and d increases with every conflict: d = [2d].

3. Furthermore, whenever a clause is learned the score of the variables of this
clause is additionally increased by adding d to its score.

4. As soon as a variable score s or d reaches a certain limit k, e.g. k = 259,
all variables get their score rescaled by a constant, e.g. s = [s-260]. At
this point d is also rescaled: d = [d - 275].

5. At a decision point with probability % choose a variable at random. In
the other cases choose an unassigned variable with the highest score.

The heuristic has very low overhead since it is independent of variable as-
signments which makes it a fast strategy. Furthermore, it favors variables that
satisfy the most possible number of clauses and prefers variables that are more
involved in conflicts.

2.10.4 Conflict Analysis and Learning: 1UIP scheme

If a conflicting clause is found, the algorithm needs to derive a new clause from
the conflict and add it to the current set of clauses. But the problem is that this
may produce a large number of new clauses, therefore it becomes necessary to
choose a clause that is most reasonable.

2.10. IMPLEMENTING CDCL 73

This section examines how to derive such a conflict clause once a conflict
is detected. The key idea is to find an asserting clause that includes the first
UIP (Unique Implication Point). For this purpose the concept of implication
graphs is required and hence defined first. An implication graph G = (V, E) is
a directed graph with a node set V' and an edge set E. Each node has the form
/L, which means that the variable L was set to a value (either true or false)
at the decision level [either via the rule Propagate or Decide. If a variable L
of a node n was set via the rule Propagate with clause C' = D V L then there
must be an edge from every node of the variables in D to n. This means that
the variables from D imply L. In particular, decision variable nodes have no
incoming edges. A cut of an implication graph is a partition of the graph into
two nonempty sets such that the decision variable nodes will be in a different
set than the conflict node. Every edge that crosses a specific cut will be part
of a conflict set, i.e. the number of cuts denotes the number of conflict sets.
There is a total of 2%~* possible cuts, where n = # variables and k = level of
conflict clause (= # decision variables). A UIP in the graph is a variable of the
conflict level [that lies on every path from the decision variable of level [and
the conflict. The first UIP (1UIP) is a UIP that lies closest to the conflict in
the implication graph. The strategy for deriving the most useful conflict clause
is as follows:

1. Construct the implication graph according to a given set of clauses, a for-
mula ¢. As an example consider Figure 2.15 that depicts an implication
graph of the formula ¢ = {SVQ, PVQ,~PVRV~S,~PV-RVT,-PVQV
T} where the node 1/ denotes a conflict. The corresponding trail, con-
trol stack and decision level are shown in Figure 2.14. The corresponding
watched literals list is shown in Figure 2.19.

2. Identify the conflict sets by means of the implication graph, i.e. the cuts
of the graph need to be considered. In Figure 2.15 there are three cuts
depicted representing the following conflict sets: {P,-Q}, {P,—T,S} and
{P,—-R,S}.

3. Choose the most useful clause from the set of all conflicts. It proved to be
most effective to choose a clause that has exactly one variable that was
assigned at the same decision level in which the conflict arose. This is why
the clause is also called asserting clause. If there is more than one asserting
clause for a conflict as in Figure 2.15, then take the asserting clause that
contains the 1UIP. In Figure 2.16 there is only one UIP which is also the
1UIP that is =@Q. Therefore, the most useful clause from the conflict set

is {Pa _'Q}

4. Learn the clause: After determining the asserting clause C with the 1UTIP
the actual conflict clause is obtained by negating all assignments of the
variables within clause C'. This conflict clause will eventually be learned
by adding it to the set of clauses of the original formula ¢. In the example
from Figure 2.15 the clause =P V @) will be learned.

74 CHAPTER 2. PROPOSITIONAL LOGIC

Figure 2.15: An implication graph for the formula ¢ with cuts.

" \\,

1UIP
2/$

Figure 2.16: The implication graph denoted with the 1UIP.

The combination of conflict analysis and non-chronological backtracking en-
sures that the learned clause becomes a unit clause and thereby preventing the
solver from making the same mistakes over again.

2.10.5 Restart and Forget

As mentioned in the section on VSIDS (see 2.10.3) the runtime of the CDCL
implementation depends on the choice of the decision variable. In case no suit-
able variable is found within a certain time limit it might be useful to apply
a restart, another important technique applied in the CDCL implementation.
With the rule Restart all currently assigned variables will become unassigned
while learned clauses will be maintained. The motivation for this technique has
to do with the fact that the solver can reach a point where incorrect variable
assignments were made and the solver is not able to resolve within a reasonable
amount, of time the literals that are needed to find a conflict. In that case a
restart is performed intending to make better variable assignments earlier on
with the previous learned information.

A further technique that contributes to the performance of the CDCL solver

2.10. IMPLEMENTING CDCL

P
] -P|-R | T
Q —— NUL
] -P R =S
R —
} B s | @
7
T] -P | @ =T
(a) The initial state and the current trail is empty.
P
] T -R | =P
Q —— NUL
[] aS R -P
R —
} B s | @
7
T] -T | Q =P

(b) After deciding P watched literals are swapped, the trail is: P.

b |
_ T -R | =P

Q —t— NUL

[] aS R -P
R [
. = s | @

;7
T — =T Q -P

(c) After deciding =@, no change in the watched literals, the trail is: P, =Q.

76 CHAPTER 2. PROPOSITIONAL LOGIC

b]
1 T -R | =P

Q ———> NUL

] =S R -P
R I
. = s | @

4
T] =T Q -P

(d) After propagating =T, S and =R, no change of watched literals but a conflict occurs
in =PV RV S, the trail is: P, ~Q, -T, S, ~R.

P]
_ T -R | =P

Q —t— NUL

[] aS R -P
R ([
; = s | @

;7
T] =T Q -P

(e) After backtracking the literals —Q, =T, S, =R, the trail is: P.

2.10. IMPLEMENTING CDCL 7

-P Q
P | Q
P
1 T -R | =P
Q ™
———> NUL
] =S R -P
R [
. = s | @
;7
T] =T Q -P

(f) After learning the clause =P V @, the trail is still P.

Figure 2.19: The watched literals list according to the implication graph from
Figures 2.15 and 2.16 as well as the control stack, trail and decision level of
Figure 2.14.

is the rule Forget. With every conflict clause the number of learned clauses
increases. Recording all learned clauses can be very expensive especially if some
clauses are repeatedly stored or if some clauses are subsumed by others. As a
result, this can lead to an exhaustion of available memory and to an additional
overhead. Therefore deleting suitable clauses from the learned clause set can be
useful. The criteria by which the rule Forget is applied are the following: either
if the number of learned clauses is 4 times the number of original clauses or
if a specific maximum number of learned clauses is reached that is previously
given. In both cases the minimum of the following 2 cases is executed: either
half of the learned clauses are deleted or all learned clauses are deleted until a
clause is reached that implies or has implied a current assignment. Furthermore,
an implementation could also check the subsumption of learned clauses over
existing clauses but this check is often omitted due to performance reasons.

2.10.6 Algorithm and Strategy

As shown in the examples 2.9.1 and 2.9.2 a certain CDCL rule application
order can improve the performance of the rule-based CDCL algorithm. The
algorithm 5 depicts the strategy where Conflict is preferred over Propagate and
Propagate over any other rule. In general the rules Decide and Propagate should
not be applied when a conflict already exists. For otherwise, the additional
literals that are added via Decide or Propagate become useless and will be

78 CHAPTER 2. PROPOSITIONAL LOGIC

deleted again when backtracking. Therefore the application of the rule Conflict
is checked before any other rule. The statements from line 1 onwards describe
the actual strategy, i.e. Conflict is always preferred over any other rule and
Propagate is preferred over Decide. The reason why the rules Skip and Resolve
are always applied excessively once a conflict was found is due to finding the
clause with the 1UIP of the conflict level. The rule Skip is applied to those
literals that are not involved in the conflict. Via the rule Resolve the conflict
clause is resolved with clauses that implied the conflict and thereby yielding
a new potentially learned clause. Once both rules cannot be applied anymore
the state is either a fail state, Backtrack cannot be applied and the algorithm
returns the fail state (M;N;U;k; L) or the state is not a fail state and the
conflict clause with the 1UIP was found. In the latter case the current conflict
clause will be learned via the rule Backtrack. At this point it is checked whether
the total number of approached conflicts reached a certain limit, i.e. a restart is
necessary, indicating that the solver needs too much time detecting an incorrect
value assignment that was previously made. Since the number of learned clauses
increases with every conflict it is also checked whether previously learned clauses
can be deleted, i.e. forget is necessary. In case the current state has no conflict,
the rule Propagate is preferred over the rule Decide in line 15 since the chances
of taking wrong decisions when deciding a literal’s truth value decreases. The
rule Decide takes the value of the VSIDS heuristic for the current state into
account.

Algorithm 5: CDCL(S)
Input : An initial state (e; N;0;0; T).
Output: A final state S = (M;N;U;k; T)or S = (M;N;U;k; L)

1 while (any rule applicable) do

2 ifrule (Conflict(S)) then

3 while (Skip(S) || Resolve(S)) do

4 | update VSIDS scores on resolved literals;
5 end

6 update VSIDS scores on learned clause;
7 Backtrack(S);

8 scale VSIDS scores;

9 if (forget heuristic) then

10 | Forget(S) redundant clauses ;

11 Restart(S);

12 else

13 ifrule (! Propagate(S)) then

14 | Decide(S);

15

16

17 end

18 return(S);

2.11. SUPERPOSITION AND CDCL 79

2.11 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)
calculus is not successful in practice whereas most of the successful SAT solvers
implemented in 2012 are based on CDCL. In this section I will develop some
relationships between superposition and CDCL.

The start is a modification of the superposition model operator, Defini-
tion 2.7.5. The goal of the original model operator is to create minimal models
with respect to positive literals, i.e., if Nz = N for some N, then there is no
M' C N7 such that M' = N. However, if the goal generating minimal models
is dropped, then there is more freedom to construct the model while preserving
the general properties of the superposition calculus. So, let’s assume a heuristic
‘H that selects whether a literal should be productive or not.

Definition 2.11.1 (Heuristic-Based Partial Model Construction). Given a
clause set N, an ordering < and a variable heuristic H : ¥ — {0, 1}, the (partial)
model N for N and signature %, with P,Q € ¥ is inductively constructed as
follows:

NE = Ug<rds
{P} if (DV P) € N, P strictly maximal and N} # D or
sH = H(P) =1 and for all clauses (C'V -P) € N,C < =P
L it holds N} |= C
0 otherwise
NE = Upes o

Please note that Nz is defined inductively over the clause ordering <

whereas N is defined inductively over the atom ordering <.
Proposition 2.11.2. If H(P) =0 for all P € £ then Nz = N for

any N.

Proof. The proof is by contradiction. Assume Nz # N, i.e., there is a minimal
P € ¥ such that P occurs only in one set out of N7 and N&.

Case 1: P € Nz but P ¢ N

Then there is a productive clause D = D'V P € N such that P is strictly
maximal in this clause and Np [D'. Since P is strictly maximal in D the clause
D' only contains literals strictly smaller than P. Since both interpretations agree
on all literals smaller than P from Np £ D' it follows N £ D' and therefore
6% = {P} contradicting P ¢ NJ.

Case 2: P ¢ Nz but P € N&.

Then there is a productive clause D = D'V P € N such that P is strictly
maximal in this clause and N} £ D' because H(P) = 0. Since P is strictly
maximal in D the clause D' only contains literals strictly smaller than P. Since

80 CHAPTER 2. PROPOSITIONAL LOGIC

both interpretations agree on all literals smaller than P from N} = D' it follows
Np £ D' and therefore §p = {P} contradicting P ¢ Nz. O

So the new model operator N& is a generalization of N7. Next, I will show
that with the help of N a close relationship between the model operator run
by the CDCL calculus and the superposition model operator can be established.
This result can then further be used to relate the abstract superposition redun-
dancy criteria to CDCL. But before going into the relationship I first show that
the generalized superposition partial model operator Ngf supports the standard
superposition completeness result, analogous to Theorem 2.7.9. Recall that the
same notion of redundancy, Definition 2.7.3, is used.

Theorem 2.11.83. If N is saturated up to redundancy and L ¢ N then N is
satisfiable and N¥ = N.

Proof. The proof is by contradiction. So T assume (i) any clause C' derived by
Superposition Left or Factoring from N that C is redundant, i.e., N<¢ = C,
(ii) L ¢ N and (iii) N& [~ N. Then there is a minimal, with respect to <,
clause Cy VL € N such that Nz [# Cy V L and L is a maximal literal in Cy V L.
This clause must exist because 1 ¢ N.

The clause C; V L is not redundant. For otherwise, N <¢1VL E Ci VL and
hence N& |= C; V L, because N& = N=1VL 4 contradiction.

I distinguish the case whether L is a positive or a negative literal. Firstly,
assume L is positive, i.e., L = P for some propositional variable P. Now if P is
strictly maximal in Cy V P then actually §% = {P} and hence N} = C; V P, a
contradiction. So P is not strictly maximal. But then actually C; V P has the
form C{ vV PV P and Factoring derives C] V P where (C] V P) < (C{ VPV P).
Now C] V P is not redundant, strictly smaller than C; V L, we have C] VP € N
and N J£ C} V P, a contradiction against the choice that Cy V L is minimal.

Secondly, assume L is negative, i.e., L = =P for some propositional variable
P. Then, since N& = Cy V =P we know P € Nz, i.e., §% = {P}. There are two
cases to distinguish. Firstly, there is a clause Cy V P € N where P is strictly
maximal and by definition (Cy V P) < (Cy V =P). So a Superposition Left
inference derives Cy V Cy where (C; V C2) < (C; V =P). The derived clause
Oy V Cy cannot be redundant, because for otherwise either N<¢2VF = Cy v P
or NXC1V=F = ¢y v-P.So C; VCy € N and N W Cy Vv Cy, a contradiction
against the choice that Cy V L is minimal. Secondly, there is no clause Co VP € N
where P is strictly maximal but H(P) = 1. But a further condition for this case
is that there is no clause (Cy V =P) € N such that N} j# C; contradicting the
above choice of C; V —P. O

Recalling Section 2.7 Superposition is based on an ordering <. It relies
on a model assumption Nz, Definition 2.7.5 or its generalization Ng:{, Defi-
nition 2.11.1. Given a set N of clauses, either Nz (N&) is a model for N, N
contains the empty clause, or there is an inference on the minimal false clause
with respect to <, see the proof of Theorem 2.7.9 or Theorem 2.11.3, respec-
tively.

2.11. SUPERPOSITION AND CDCL 81

CDCL is based on a variable selection heuristic. It computes a model as-
sumption via decision variables and propagation. Either this assumption is a
model of N, N contains the empty clause, or there is a backjump clause that is
learned.

For a CDCL state (M, N,U, k, D) generated by an application of the rule
Conflict, where M = Ly, ..., L, any following Resolve step actually corresponds
to a superposition step between a minimal false clause and its productive coun-
terpart, where atom(L;) < atom(Ls) < ... < atom(L,). Furthermore, for a
positive decision literal L occurring in M the heuristic H(atom(L,,)) = 1 and
‘H(atom(L,,)) = 0 otherwise. Then the learned clause is in fact generated by su-
perposition with respect to the model operator N&. The following propositions
present this relationship between Superposition and CDCL in full detail.

Proposition 2.11.4. Let (M,N,U,k,D) be a CDCL state generated by a
strategy with eager application of Conflict and Propagate, in this order. Let M =
Li,...,Ly, H(atom(L,,)) = 1 for any positive decision literal L, occurring in
M and H(atom(L,,)) = 0 otherwise. The superposition ordering is atom(L;) <
atom(Ly) < ... < atom(L,,). Then

1. L, is a propagated literal.

2. The resolvent between C'V =L, and the clause C' V L;, propagating Ly, is
a superposition inference and the conclusion is not redundant.

Proof. 1. Assume L,, is a decision literal. Then, since Conflict and Propagation
are applied eagerly, D has the form D = D'V~L,. But then at trail Ly, ..., L,_1
the clause D'V —L,, propagates =L, with respect to L;...L,_1, so with ea-
ger propagation, the literal L,, cannot be decision literal but its negation was
propagated by a clause D'V =L, € N.

2. Both C and C' only contain literals with variables from atom(L,),
...,atom(Lg_1). Since we assume duplicate literals to be removed and tau-
tologies to be deleted, the literal =Ly is strictly maximal in C'V =Ly and Ly
is strictly maximal in C' V Lj. So resolving on Ly is a superposition inference
with respect to the variable ordering atom(L;) < atom(Ls)... < atom(Lg).
Now assume C'V C" is redundant, i.e., there are clauses D1, ..., D, from N with
D;<Cv(C"and Dy,...,D, ECVC'. Since CV(C'"is falsein L ...L;_; there
is at least one D; that is also false in Ly ...L,_1. A contradiction against the
assumption that L, ... Lg—_q does not falsify any clause in N, i.e., rule Conflict
was applied eagerly. O

Proposition 2.11.4 is actually a nice explanation for the efficiency of the
CDCL procedure: a learned clause is never redundant. Recall that redundancy
here means that the learned clause C' is not entailed by smaller clauses in NUU.
Furthermore, the ordering underlying Proposition 2.11.4 is based on the trail,
i.e., it changes during a CDCL run. For superposition it is well known that
changing the ordering is not compatible with the notion of redundancy, i.e.,
superposition is incomplete when the ordering may be changed infinitely often
and the superposition redundancy notion is applied.

82 CHAPTER 2. PROPOSITIONAL LOGIC

Example 2.11.5. Consider the superposition left inference between the clauses
PV @ and RV —Q with ordering P < R < @ resulting in PV R. Changing the
ordering to @ < P < R the inference P V R becomes redundant. So flipping
infinitely often between P < R < Q and Q < P < R is already sufficient to
prevent any saturation progress.

Although Example 2.11.5 shows that changing the ordering is not compati-
ble with redundancy and superposition completeness, Proposition 2.11.4 proves
that any CDCL learned clause is not redundant in the superposition sense and
the CDCL procedure changes the ordering and is complete. This relationship
shows the power of reasoning with respect to a model assumption. The model
assumption actually prevents the generation of redundant clauses. Nevertheless,
also in the CDCL framework completeness would be lost if redundant clauses
are eagerly removed in general. So either the ordering is not changed and the
superposition redundancy notion can be eagerly applied or only a weaker notion
of redundancy is possible while keeping completeness.

The crucial point is that for the superposition calculus the ordering is also
the bases for termination and completeness. If the completeness proof can be
decoupled from the ordering, then the ordering might be changed infinitely often
and other notions of redundancy become available. However, these new notions
of redundancy need to be compatible with the completeness, termination proof.

Definition 2.11.6 (Abstract Length Redundancy). A clause C' is length redun-
dant with respect to a clause set N if N<I€! = €| where N<I°l = {D | |D| <
1C1}

Theorem 2.11.7 (Length Redundancy and Superposition). Arbitrary Order-
ing Changes plus fairness plus length redundancy preserves completeness.

Theorem 2.11.8 (Length Redundancy and CDCL). At any time length re-
dundant clauses may be removed.

2.12 Redundancy

One of the most successful and robust heuristics is to keep the formula, clause
set “small”. This heuristic is already the motivation for the specific renaming
algorithm presented in Section 2.5.3. So getting rid of superfluous, i.e., redun-
dant formulas or clauses is typically beneficial to any efficient reasoning. The
section on normal form transformation (Section 2.5) and the sections on CDCL
and superposition already introduced some redundancy criteria. In this section
they are extended for the case of clause sets.

There is an important difference between clause redundancy before a CDCL
or superposition calculus starts reasoning and clause redundancy while the cal-
culus (superposition, CDCL) is operating on a set of clauses. For the former
it is sufficient that the redundancy procedure is sound and terminating. For
the latter the procedure has in addition to respect the redundancy notion of
the respective calculus in order to preserve completeness, see Definition 2.7.3,
Example 2.11.5, and Theorem 2.11.8, Theorem 2.11.7.

2.12. REDUNDANCY 83

2.12.1 Redundancy before Superposition and CDCL

Here are some standard rules for removing redundant clauses before superposi-
tion or CDCL starts. Subsumption, Tautology Deletion and Subsumption Res-
olution have already been introduced in Section 2.7. Purity and Blocked Clause
Deletion are new.

Subsumption Deletion
(Nw{C1,Ca}) =resc (NU{C1})
pI‘OVided Cl g 02

Tautology Deletion
(NH'J {CVPV—hP}) =RBSC (N)

Subsumption Resolution
(N] {Ol \Y L, CyV L}) = RBSC (N U {Ol \Y L, 02})
where Ol g CQ

Purity
(NW{C;VL,...,Ck VL}) =rpsc (N)
where L, L do not occur in N

Blocked Clause Elimination

(N”W{Ci VL,...,C, VL,C]| \/Z,...,C;\/Z}) =rBsc (N)
where L, L do not occur in N and all resolvents on L between any C; V L and
C} V L result in tautologies

Example 2.12.1. Consider a clause set consisting of the five clauses
(1) PVQ
(2) PVQVRVS
(3) =RVS
(4) RV=S
(5) ~QVS
Clause (1) subsumes clause (2). Subsumption resolution is applicable to
clause (2) and clause (5) resulting in PV RV S. Purity is applicable to P.
Blocked clause elimination is not applicable.
Applying first subsumption deletion results in the clauses
(1) PvQ
(3) -RVS
(4) RV=S
(5) ~QVS
Now subsumption resolution is no longer applicable, but blocked clause elimina-
tion is to R and clauses (3), (4). After application of blocked clause elimination
the resulting clauses are
(1) PvVQ
(6) ~QVvS
Now P and S are pure and after applying purity the result is the empty set of
clauses indicating satisfiability.

84 CHAPTER 2. PROPOSITIONAL LOGIC

For the above Example 2.12.1 other rule application orderings are possible,
e.g., starting with purity on P. Nevertheless, any application ordering results in
an empty set of clauses. However, =gpgsc is not confluent.

Lemma 2.12.2 (=gpsc terminates).

Proof. Exercise U

Lemma 2.12.3 (=gpsc is sound). If (N) =rpsc (N') then N is satisfiable iff
N’ is.

Proof. =: All rules remove clauses except subsumption resolution. Removing
clauses obviously preservers satisfiability. For subsumption resolution any model
satisfying C; V L and C3 V L has to satisfy C; ot Cs. Since C; C Cs it satisfies
Cs.

<: The direction is obvious for Subsumption Deletion, Tautology Deletion, and
Subsumption Resolution. Since, actually, Purity is a special case of Blocked
Clause Elimination, it suffices to show the case of Blocked Clause Elimination.
In this case N = N'W{C1 VL,...,Cy VL,C{VL,...,C/VL}and L, L do not
occur in N’ and all resolvents on L between any C; V L and C} V L result in
tautologies. Let A be a model for N'. Obviously, being A a model for N does
not depend on the truth value of L, because neither L nor L occurs in N. If A
does not satisfy some clause C; V L (analogously C} Vv L), then A(L) = 0 and
A(C;) = 0. Since all combinations C; V C}, for any j are tautologies, A(C?}) = 1
for all j. Hence A’ which is like A except that A'(L) =1 is a model for N. O

2.12.2 Redundancy while Superposition and CDCL

2.13 Complexity

This book does not focus on complexity but on how to build systems that are
useful for selected applications. Nevertheless, any system, calculus presented in
this chapter on SAT has a worst case exponential running time. So it cannot run
efficiently on any SAT instance. So some background knowledge about relevant
complexity results is useful. Here I concentrate on a personal selection of “clas-
sics”, complexity results everybody interested in propositional logic reasoning
should know.

The pigeon hole formulas are such a classic, because they were among the
first detected formulas that don’t have polynomial length resolution proofs. In
addition, they explain why the renaming techniques introduced in Section 2.5.3
are not, only useful to prevent an explosion in the number of generated clauses
out of a formula, but also for the afterwards reasoning process.

Definition 2.13.1 (Pigeon Hole Formulas ph(n)). For some given n and propo-
sitional variables P; j, where 1 < j <n, 1 <i < n+1, the corresponding pigeon

2.13. COMPLEXITY 85

hole formula (clause set) ph(n) is

ph(n) = /\ PiiV...VP, A /\ /\ -P;; VP
1<i<n+1 1<j<n 1<ik<n+1
i< k

The intuition behind a variable P; ; is that it is true iff pigeon 4 sits in hole
Jj. Then the formulas P;; V...V P; ,, express that every pigeon has to sit in some
hole and the formulas —P; ; V =P ; that a hole can host at most one pigeon.
Since there is one more pigeon than holes, the formula is unsatisfiable.

Note that the number of clauses of a pigeon hole formula ph(n) grows cubic
in n. The famous theorem on the pigeon whole formulas says that any resolution
proof showing unsatisfiability of ph(n) has a length at least exponential in n,
i.e., no resolution-based system can efficiently show unsatisfiability of a pigeon
hole formula.

Theorem 2.13.2 (Haken [23]). The length of any resolution refutation of ph(n)
is exponential in n.

Recall that any refutation of a CDCL procedure corresponds to a resolution
refutation, where each conflict generates some new resolvents. Now, a CDCL
procedure solves the pigeon hole problem by an enumeration of all possible
combinations how to put the n + 1 pigeons into the n holes. It guesses some
pigeon in some whole, potentially propagates the consequences of the decision,
guesses the next one and so on until a conflict for the particular guess shows that
there is one hole missing for the final pigeon. Then it backtracks by remembering
that for the particular guess, i.e., combination pigeons, holes, there is no solution.
The CDCL procedure never “recognizes” the fact that the problem is completely
symmetric in pigeons and holes, e.g., once it has shown that there is no solution
with pigeon 1 in hole 1 (P true) then the problem cannot be solved at all. It
is not necessary anymore to test the holes 2 to n for pigeon 1, because these
cases are symmetric. This is an informal explanation for the above theorem.

The pigeon hole problem can be easily solved by an inductive argument. For
ph(n) we put pigeon n + 1 in hole n. Then the problem is solvable iff ph(n — 1)
has a solution. Repeating this argument n — 1 times it remains to show that
there is no solution for ph(l), i.e., the clause set Py 1, Po1, P11 V 2P is
unsatisfiable.

This reasoning can be perfectly simulated by resolution if additional clauses
over extra variables are added to ph(n). Let Bf, ; be fresh propositional variables
where 2 <k <mn,1<j<k,1<i<k, where we add the clauses resulting from

Bl < (P jV (Pin A Payij)) for the first step
k k41 k+1 E+1
Bi; < (B;j" V(B AByl; ;) for all subsequent steps
to ph(n), where 2 < k < n — 1 and the 7,j run in the limits corresponding to
B ; or Bi';, respectively. Since the Bﬁ ; are fresh and there is only one defining

3.5
equivalence for each Bf’ ;» the resulting problem is unsatisfiable iff the original

86 CHAPTER 2. PROPOSITIONAL LOGIC

is. Each equivalence results in four clauses, e.g., the first equivalence generates
the clauses B"] -P;;, B} V—-P V=P, 7B} VP iV Pin, B} VP,J \Y,
P, +1,;- Thus there are only polynomlally many clauses added to ph(n) Now the
additional clauses enable to reproduce via resolution the inductive argument,
where for each “induction step” only polynomially many resolution steps are
needed. Thus the extended pigeon hole problem can be refuted by resolution in
polynomially many steps [14].
For example, for the case n = 2 the pigeon hole clauses are

Py VP,
Py 1V Po
PV P3s
P VP,
-P VP,
P, VP,
—PioV Py
P2V -P3s

1
2
3
4
5
6
7
8
9) PV -P3s

AN AN AN N N N N N
— N N N N

and the additional equivalences defining the Biz,j are

Bi, < (PiaV(PiaAPsy))
B3, ¢ (P2a V (P22 A P3y))

Now from =B} | V P11V P31, =B3, V Py; V Py with (1), (2), (4), (5), (6), (7)
via resolution the clause

(10) _'B%,l \ _'B%J

can be derived. From B, V =P 1, Bf | V=P 5V =P with (1), (3), (8) via
resolution the clause

(11) B,

can be derived. Analogously, from B3, V =Ps 1, B3,V ~Ps2 V =P;; with (2),
(3), (9) via resolution the clause

(12) B3,

can be derived. Now, (10), (11), (12) constitute ph(1), i.e., the above resolution
steps successfully perform the reduction from ph(2) to ph(1).

There are two reasons why I discuss the pigeon hole problem in such
detail. First, it shows that the invention of new names (propositional
variables) for subformulas, can lead to an exponential reduction in
proof size. So it constitutes a further justification for renaming during CNF

transformation (see Section 2.5.3). However, in general, there is no easy answer
when additional names help in proof length reduction or in proof search. Second,

2.13. COMPLEXITY 87

and in my opinion even more important, the pigeon hole problem example nicely
shows that “inductive reasoning” can be done in propositional logic and that it
can pay off. For many real world problems, e.g., hardware verification, inductive
reasoning is key to solve the problems. At the time of this writing, research
in how to automatically detect and make use of inductive properties has just
started for propositional logic. This holds as well and gets even more difficult
for more expressive logics, such as first-order logic.

For the rest of this section I will study some well-known classes for which
SAT can be solved in polynomial time, namely, Horn-SAT and 2-SAT. Horn SAT
is the class of clauses where each clause has at most one positive literal, 2-SAT
the class of clauses where each clause has at most two literals. For both clauses
SAT is decidable in polynomial time. Actually, the 2-SAT class constitutes a
sharp border between polynomially solvable and NP-complete, because the 3-
SAT class is already NP-complete.

Definition 2.13.3 (Horn-SAT). A propositional clause set N belongs to the
class of Horn-SAT problems if every clause contains at most one positive literal.

Definition 2.13.4 (k-SAT). A propositional clause set N belongs to the class
of k-SAT problems if every clause contains at most k literals.

Proposition 2.13.5. Any Horn-SAT clause set N can be decided in time linear
in the size of N.

Proof. Superposition with selection is complete for SAT (Theorem 2.11.3). So
consider a superposition saturation for N where in every clause containing a
negative literal it is selected. Then the saturation process has two nice properties.
First, any superposition inference is an inference between a positive unit clause
and a clause containing at least one negative literal. Second, there is always a
clause where all negative literals can be resolved away by positive unit clauses
or the clause set IV is satisfiable. Combining the two properties results in a
linear-time algorithm for Horn-SAT. O

Actually, the proof of the above proposition implies that the CDCL rules
Propagate and Conflict (see Section 2.9) are complete for Horn-SAT. Another
consequence is that unit superposition, a restriction to superposition where for
all inferences one parent clause must be a unit clause, is also complete for Horn-
SAT. For unit superposition the result can even be reversed. If for some clause
set NV there is a unit superposition refutation, then the subset of clauses involved
in the unit refutation can be transformed into a Horn clause set by flipping signs
of literals.

The clause set PV @Q, PV R, "RV @, —Q is unsatisfiable and refutable by
unit superposition. It is not Horn because of the clause PV Q. Now by flipping
the sign of @ in all clauses results in the clause set PV =@, -PV R, =RV —Q,
(@ which is Horn, equisatisfiable, and still unit refutable.

Proposition 2.13.6. Any 2-SAT clause set N can be decided in time polyno-
mial in the size of V.

88 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. (Idea) Firstly, all unit clauses can be eliminated by recursively resolv-
ing away the respective literals, following the algorithm of Proposition 2.13.5.
For a clause set N containing only clauses of length two a directed graph is
constructed. The nodes are the propositional literals from N. For each clause
LV K € N, the graph contains the two directed edges (L, K) and (K, L). Then
N is unsatisfiable iff there is a cycle in the graph containing two nodes L, L.
This can be decided in time at most quadratic in N. O

Interestingly, 2-SAT constitutes the border to NP-completeness, because 3-
SAT is already NP-complete. This can be seen by reducing any clause set to a
satisfiability equivalent 3-SAT clause set via the following transformation. For
any clause

LiV...VL,

consisting of more than three literals (n > 3) replace the clause by the clauses

le---VLLn/2JVP
L[n/2J+1V---VLnV_'P

where P is a fresh propositional variable. Obviously, L1 V ...V L, is satisfiable
iff Ly v ...VLLn/QJ VP, LLn/2J+1 V...VL,V~—P are.

Proposition 2.13.7. 3-SAT is NP-complete.

2.14 Applications

For the application of propositional logic on an arbitrary problem it needs to
be encoded into a propositional formula ¢. The satisfiability of ¢ can then be
checked via one of the calculi developed in this chapter, e.g. Resolution or DPLL.
In case ¢ is satisfiable the corresponding calculus derives a model which has to
be interpreted as a solution to the original problem. The unsatisfiability of ¢
must be interpreted correspondingly.

2.14.1 Sudoku

As a suitable application of propositional logic serves the Sudoku puzzle. In
chapter 1.1 a specific 4 x 4 Sudoku puzzle was solved using a specific calculus.
In this section a general n? x n? Sudoku puzzle is encoded into propositional
logic and exemplarily the Resolution calculus from this chapter is applied to a
4 x 4 Sudoku puzzle.

For the encoding propositional variables P{; are defined where Pid,j is true
iff the value of square (4, j) is d. Square boxes are denoted by @;,; where @); ; in-
cludes the squares (i, §), ..., (i+n—1,j+n—1). The corresponding propositional
clauses are constructed as follows:

1. For every initially assigned square (i, j) with value d generate Pi‘fj

2. For every square (i, j) generate P, V...V Pl”;

2.14. APPLICATIONS 89

3. For every square (4,j) and pair of values d < d’ generate —-ng \ —|Pid,;.

4. For every value d and column 4 generate Pgl V...V P! . (analogously for
rows)

5. For every value d and square box (); ; generate Pid,j V...V Pid+n71,j+n71

6. For every value d, column i and pair of rows j < j' generate —|Pid,j \% —|Pid7j,
(analogously for rows)

7. For every value d, square box Q;; and pair of squares (k,l) <iex (K¥',1")
where i <k, k' <i+nand j <I,I' <j+n generate =P,V -Pf

The corresponding formula ¢ is the conjunction of each subformula generated
by the steps 1 to 7. This makes a total of m + n* + inf(n? — 1) + 2n* + n* +
in®(n? — 1) + inf(n? — 1) = m + 4n* + 3n%(n? — 1) clauses where m is the
number of initially assigned squares.

After the application of a propositional logic calculus the remaining unit
clauses Pi‘fj, i.e. the missing numbers to the initial Sudoku puzzle, are derived if
the encoded formula is satisfiable. Otherwise there is no solution to the Sudoku

puzzle.

|12][3]4]
1

=l DN =
[N}

Figure 2.20: A 4 x 4 Sudoku

The application of this encoding on the puzzle from Figure 2.20 yields for
example the clauses Pf, V P§,V Pj,V P{,, =P§3V =P§ 3, ~P3,V =P}, and
P22,3. Applying the rule Resolution from the Resolution calculus from chapter 2.6
results in:

(N {=PF3VPP3, P33} =res (N U{=P33V -Pis, Pis} U{=Pi;}) and
(N’L+J{P?}74VP§’4VP33’4VP§’4, ~P55}) =res (N'U{P VP, VP VP4, P35 U
{Pi,V P}, Vv P{,}) =fes (N" U{P7,}) see Figure 2.21. After exhaustive
application of the Resolution calculus the remaining unit constraints are derived
and the solution is found.

2.14.2 Hardware Verification

Another example for the application of propositional logic is the verification of
logic hardware circuits. Since specific logic hardware circuits can be transformed
into CNF the satisfiability of small logic circuits as well as certain properties of
logic circuits can be checked with a propositional calculus from this chapter. This

90 CHAPTER 2. PROPOSITIONAL LOGIC

Lt]2]3]4]
A

2 1
HE

1 214

Figure 2.21: A 4 x 4 Sudoku after generating the unit constraint P3,

chapter shows how to encode specific logic circuits into propositional logic and
how to apply the encoding on an exemplary logic circuit as shown in Figure 2.22.

This chapter considers logic circuits with three different types of gates Gj:
AND-, OR- and NOT-gates. Each gate has one output, AND- and OR-gates
have two inputs whereas the NOT-gate has only one input. For the encoding of
the logic circuits a propositional variable @; is defined for each gate GG; where
Q; is true iff the gate G; has output value 1. The propositional clauses are
constructed as follows:

1. For every AND-gate G; with inputs @; and @y we have Q; < (Q; A Qk)
which is equivalent to (=Q; V Q;) A (7Q; V Qr) A (—Q; V —~Qk V Q;)

2. For every OR-gate G; with inputs @; and Qr we have Q; < (Q; V Qk)
which is equivalent to (=Q; V Q; V Qi) A (mQ; V Qi) A (—=Qr V Qi)

3. For every NOT-gate G; with input (); we have Q); <+ =@Q; which is equiv-
alent to (—Q; V —=Q;) A (Q; V Qi).

The corresponding formula ¢ is the conjunction of all clauses generated by
the steps 1 to 3. After generating this encoding a propositional calculus from
chapter 2 can be applied in order to check certain properties of logic circuits
(note that the calculi presented in chapter 2 are inefficient on larger logic circuit
constructions). Some of the properties that can be checked are for example the
satisfiability of logic circuits given a partial truth assignment § (which assigns
boolean values to outputs), the satisfiability of logic circuits in case of a recursive
construction, the equivalence of two logic circuits or to check if certain properties
for example Qg — Q5 for the logic circuit in Figure 2.22 hold.

As an example the satisfiability of the logic circuit in Figure 2.22 under a
given partial truth assignment 5(Qq) = 1 and 8(Q5) = 1 can be checked using
the DPLL calculus:

The application of the encoding to the logic circuit of Figure 2.22 to-
gether with the partial truth assignment [yields a total of 12 clauses:
N = {Q0,Q5 Qs V Q2 V Q1,7Q2 V Q4,7Q1 V Q4,7Q2 V —Qo,Q2 V
Qo, Q3 V =Q1,Q3 V Q1,7Q5 V Q4,~Q5 V Q3,7Q4 V Q3 V Qs}. Apply-

ing the DPLL calculus we achieve: (& N) =piePagte (0. N) =propagate

(QoQs; N) =D (QoQ5Qu; N) =P8 (Q0Q5Q4Q3; N) =prreate
(Q0Q5Q4Q3-Q1; N) =EHP (00 05Q4Q3-Q1Q2; N). Let M = (QoQ5Q4Q3-Q1Q>)

2.14. APPLICATIONS 91

Qo

Gy

B

@

Figure 2.22: A logic circuit with two NOT-gates (G2 and G3), an OR-gate G4
and an AND-gate G5

then the logic circuit is unsatisfiable under the given truth assignment since
M |= =N and there is no decision literal in M.

If the logic circuit of Figure 2.22 is considered without a partial truth as-
signment then the construction is satisfiable for example with M = (=Qo—Q1).
If the gate G4 of Figure 2.22 is replaced by an AND-gate instead of an OR-
gate then the construction will always be unsatisfiable independent of any truth
assignment.

Historic and Bibliographic Remarks

Although already Greek philosophers like Aristotle (384 BC — 322 BC) were
interested in “truth of propositions” the syntax and semantics of propositional
logic goes back to the modern logicians, mathematicians and philosophers Au-
gustus de Morgan (1806 — 1871), George Boole (1815 — 1864), Charles Sanders
Peirce (1839 — 1914), and Gottlob Frege (1848 — 1925). In particular, today
Boole’s calculus [10] is known as “propositional logic”. For a nice historic per-
spective see Martin Davis’s book [16].

92

CHAPTER 2. PROPOSITIONAL LOGIC

Chapter 3

First-Order Logic

3.1 Syntax

Definition 3.1.1 (Many-Sorted Signature). A many-sorted signature ¥ =
(S,Q,1I) is a pair consisting of a finite non-empty set S of sort symbols, a
non-empty set Q of operator symbols (also called function symbols) over S and
a set II of predicate symbols. Every operator symbol f € Q has a unique sort
declaration f : S; x...x S, — S, indicating the sorts of arguments (also called
domain sorts) and the range sort of f, respectively, for some Si,...,5,,5 € S
where n > 0 is called the arity of f, also denoted with arity(f). An operator
symbol f € Q with arity 0 is called a constant. Every predicate symbol P € II
has a unique sort declaration P C Sy x ... x S,,. A predicate symbol P € II
with arity 0 is called a propositional variable. For every sort S € S there must
be at least one constant a € Q with range sort S.

In addition to the signature X, a variable set X', disjoint from {2 is assumed, so
that for every sort S € S there exists a countably infinite subset of X' consisting
of variables of the sort S. A variable z of sort S is denoted by zg.

Definition 3.1.2 (Term). Given a signature ¥ = (S,Q,II), a sort S € S and
a variable set X, the set Ts(X, X) of all terms of sort S is recursively defined
by (i) zs € Ts(S,X) if zg € X, (i) f(t1,...,tn) € Ts(S,X) if f € Q and
f:S1x...x8, > Sandt; € Ts, (X, X) for every i € {1,...,n}.

The sort of a term ¢ is denoted by sort(¢), i.e., if t € Ts(X, X') then sort(t) =
S. A term not containing a variable is called ground.

For the sake of simplicity it is often written: T'(X, X') for (Jgc s Ts(%, X), the
set of all terms, Ts(X) for the set of all ground terms of sort S € S, and T'(X)
for Jges Ts(X), the set of all ground terms over ¥.

Definition 3.1.3 (Equation, Atom, Literal). If s,¢ € Tg(X, X) then s & ¢ is an
equation over the signature ¥.. Any equation is an atom (also called atomic for-
mula) as well as every P(t1,...,t,) where t; € Ts, (X, X) forevery i € {1,...,n}

93

94

and P € II, arity(P) = n, P C S} X

atom is called a literal.

The literal s ~ ¢ denotes either s &~ t or ¢ ~
atom and negative otherwise. A negative equational literal —(s ~

as s # t.

function fp : Sy,..
a function fp :

fe(t,-..

Definition 3.1.4 (Formulas).

CHAPTER 3. FIRST-ORDER LOGIC
. X Sp. An atom or its negation of an

s. A literal is positive if it is an
t) is written

Non equational atoms can be transformed into equations: For this a
given signature is extended for every predicate symbol P as follows:
(i) add a distinct sort B to S, (ii) introduce a fresh constant true of
the sort B to , (iii) for every predicate P, P C S; X ... x S,
.,Sn = B to Q, and (iv) encode every atom P(t1,...
Si,...,Sn
,tn) & true. are overloaded here.

add a fresh
,tn) as
— B. Thus, predicate atoms are turned into equations

The set FOL(X, X) of many-sorted first-order

formulas with equality over the signature X is defined as follows for formulas
¢, € Fx(X) and a variable x € X

FOL(XZ, X) Comment
L falsum
T verum
P(t1,...,ty),s ®t atom
(o) negation
(pNY) conjunction
(V) disjunction
(¢ —) implication
(¢ <> 1) equivalence
Vz.p universal quantification
dx.¢ existential quantification

A consequence of the above definition is that PROP(X) C FOL(Y', X) if
the propositional variables of ¥ are contained in ¥’ as predicates of arity 0. A
formula not containing a quantifier is called quantifier-free.

Definition 3.1.5 (Positions). It follows from the definitions of terms and for-
mulas that they have tree-like structure. For referring to a certain subtree,
called subterm or subformula, respectively, sequences of natural numbers are
used, called positions (as introduced in Chapter 2.1.3). The set of positions of
a term, formula is inductively defined by:

pos(z) :={e}ifxe X
pos(¢p) :={e}if o€ {T, L}
pos(=p) = {e}U{lp|p € pos(p)}
pos(¢potp) :={e}U{lp|p € pos(¢)}U{2p|p € pos(¢¥)}
pOS(S ~t) :={efU{lp|pepos(s)}U{2p]|p€ pos(t)}
pos(f(ti, ..., tn)) = {e}UUi,{ip| p € pos(ti)}
pos(P(ty,...,tn)) = {eyUU;,{ip | p € pos(ti)}
pOS(Vw ¢) = {eyU{lp|p € pos(¢)}
pos(Ir.¢) := {e}U{lp|p € pos(¢)}

3.1. SYNTAX 95

where o € {A,V, =, &} and t; e T(X,X) for all i € {1,...,n}.

The prefiz orders (above, strictly above and parallel), the selection and re-
placement with respect to positions are defined exactly as in Chapter 2.1.3.

An term ¢ (formula ¢) is said to contain another term s (formula ¢) if ¢, = s
(¢p = 9). It is called a strict subexpression if p # €. The term ¢ (formula @)
is called an immediate subexpression of s (formula) if |p| = 1. For terms a
subexpression is called a subterm and for formulas a subformula, respectively.

The size of a term ¢ (formula ¢), written |¢| (|¢|), is the cardinality of pos(t),
ie., [t| := |pos(t)| (|¢| := | pos(¢)]). The depth of a term, formula is the maximal
length of a position in the term, formula: depth(t) := maz{|p| | p € pos(t)}
(depth(¢) := maz{|p| | p € pos(¢)}). The set of all variables occurring in a
term ¢ (formula ¢) is denoted by vars(t) (vars(phi)) and formally defined as
vars(t) == {z € X | x = t|p,p € pos(t)} (vars(d) = {z € X | z = ¢|p,p €
pos(4)}). A term ¢ (formula ¢) is ground if vars(t) = 0 (vars(¢) = 0).

Note that vars(Vz.a ~ b) = () where a, b are constants. This is justified by the
fact that the formula does not depend on the quantifier, see semantics below.

In Vz.¢ (3z.¢) the formula ¢ is called the scope of the quantifier. An oc-
currence ¢ of a variable z in a formula ¢ (¢|, = z) is called bound if there is
some p < g with ¢|, = Vz.¢' or ¢|, = Jz.¢’. Any other occurrence of a vari-
able is called free. A formula not containing a free occurrence of a variable is
called closed. If {x;,...,x,} are the variables freely occurring in a formula
¢ then Vrq,...,z,.¢0 and Jzy,...,x,.¢ (abbreviations for Vi .Vas...Vr,.0,
Iy Vs ... Vo,.¢, respectively) are the universal and the existential closure of

é.

Example 3.1.6. For the literal =P(f(z, g(a))) the atom P(f(z,g(a))) is an
immediate subformula of occurring at position 1. The terms x and g(a) are
strict subterms occurring at positions 111 and 112, respectively. The for-
mula =P(f(z,g(a)))[bli11 = ~P(f(b,g(a))) is obtained by replacing = with b.
pos(—=P(f(z,g(a)))) = {e,1,11,111,112,1121} meaning its size is 6, its depth 4
and vars(=P(f(z,9(a)))) = {z}.

The polarity of a subformula ¢ = ¢|, at position p is pol(¢, p) where pol is
recursively defined by

pol(p,e) =1
pol(=¢,1p) = —pol(¢,p)
pol(¢1 o ¢2,ip) = pol(¢s,p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) := pol(¢2,p)
pol(¢1 <> ¢a,ip) =0
pol(P(t1,...,tn),p) =1
pol(t = s,p) =1
pol(Vz.¢,1p) := pol(¢, p)
pol(3z.¢,1p) := pol(¢, p)

