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problem state (M ;N ;U ; j;C) if k is the maximal level of a literal in D. Re
all

C is a non-empty 
lause or > or ?. The rules are

Propagate (M ;N ;U ; k;>) )

CDCL

(ML

C_L

;N ;U ; k;>)

provided C _ L 2 (N [ U), M j= :C, and L is unde�ned in M

De
ide

(M ;N ;U ; k;>) )

CDCL

(ML

k+1

;N ;U ; k + 1;>)

provided L is unde�ned in M

Con
i
t

(M ;N ;U ; k;>) )

CDCL

(M ;N ;U ; k;D)

provided D 2 (N [ U) and M j= :D

Skip (ML

C_L

;N ;U ; k;D) )

CDCL

(M ;N ;U ; k;D)

provided D 62 f>;?g and :L does not o

ur in D

Resolve

(ML

C_L

;N ;U ; k;D _ :L) )

CDCL

(M ;N ;U ; k;D _ C)

provided D 
ontains a literal of level k or k = 0

For rule Resolve we assume that dupli
ate literals in D _ C are always re-

moved.

Ba
ktra
k

(M

1

K

i+1

M

2

;N ;U ; k;D _ L) )

CDCL

(M

1

L

D_L

;N ;U [ fD _

Lg; i;>)

provided L is of maximal level k in D _ L and D is of level i, where i < k.

Restart

(M ;N ;U ; k;>) )

CDCL

(�;N ;U ; 0;>)

provided M 6j= N

Forget (M ;N ;U [ fCg; k;>) )

CDCL

(M ;N ;U ; k;>)

provided M 6j= N

Here ? denotes the empty 
lause, hen
e fail. The level of the empty 
lause

? is 0. The 
lause D_L added in rule Ba
ktra
k to U is 
alled a learned 
lause.

The CDCL algorithm stops with a modelM if neither Propagate nor De
ide nor

Con
i
t are appli
able to a state (M ;N ;U ; k;>), hen
e M j= N and all literals

of N are de�ned inM . The only possibility to generate a state (M ;N ;U ; k;?) is

by the rule Resolve. So in 
ase of dete
ting unsatis�ability the CDCL algorithm

a
tually generates a resolution proof as a 
erti�
ate. I will dis
uss this aspe
t

in more detail in Se
tion 2.11. In the spe
ial 
ase of a unit 
lause L, the rule

Propagate a
tually annotates the literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of

reasons. For example, starting with (�;N ; ;; 0;>) a simple 
ombination Propa-

gate, De
ide and eventually Restart yields the start state again. Even after a

su

essful appli
ation of Ba
ktra
k, exhaustive appli
ation of Forget followed

by Restart again produ
es the start state. So why these rules? A
tually, any

modern SAT solver is based on this rule set and the underlying me
hanisms. I

will motivate the rules later on and how they are a
tually used in an eÆ
ient

way.



2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 61

Example 2.9.1 (CDCL Strategy I). Consider the 
lause set N = fP _Q;:P _

Q;:Qg whi
h is unsatis�able. The below is a CDCL derivation proving this

fa
t. The 
hosen strategy for CDCL rule sele
tion produ
es a lengthy proof.

(�;N ; ;; 0;>)

)

De
ide

CDCL

(P

1

;N ; ;; 1;>)

)

De
ide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Con
i
t

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Ba
ktra
k

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;>)

)

Con
i
t

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;:Q)

)

Ba
ktra
k

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;>)

)

De
ide

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;>)

)

Con
i
t

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;:P _Q)

)

Ba
ktra
k

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;>)

)

Con
i
t

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;Q)

)

Resolve

CDCL

(�;N ; f:P _Q;:Qg; 0;?)

Example 2.9.2 (CDCL Strategy II). Consider again the 
lause set N = fP _

Q;:P _ Q;:Qg from Example 2.9.1. For the following CDCL derivation the

rules Propagate and Con
i
t are preferred over the other rules.

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Con
i
t

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;:P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; ;; 0;Q)

)

Resolve

CDCL

(�;N ; ;; 0;?)

I

In an implementation the rule Con
i
t is preferred over the rule Prop-

agate and both over all other rules. Exa
tly this strategy has been

used in Example 2.9.2 and is 
alled reasonable below. A further in-

gredient is a dynami
 heuristi
 whi
h literal is a
tually used by the rule De
ide.

This heuristi
 typi
ally depends on the usage of literals by the rule Resolve, i.e.,

literals used in Resolve \get a bonus".

De�nition 2.9.3 (Reasonable CDCL Strategy). A CDCL strategy is reasonable

if Con
i
t is always preferred over rule Propagate is always preferred over all

other rules.

Proposition 2.9.4 (CDCL Basi
 Properties). Consider a CDCL state

(M ;N ;U ; k;C) derived by a reasonable strategy from start state (�;N; ;; 0;>)

without using the rules Restart and Forget. Then the following properties hold:

1. M is 
onsistent.

2. All learned 
lauses are entailed by N .



62 CHAPTER 2. PROPOSITIONAL LOGIC

3. If C 62 f>;?g then M j= :C.

4. If C = > and M 
ontains only propagated literals then for ea
h valuation

A with A j= N it holds that A j=M .

5. If C = >, M 
ontains only propagated literals and M j= :D for some

D 2 (N [ U) then N is unsatis�able.

6. If C = ? then CDCL terminates and N is unsatis�able.

7. Ea
h in�nite derivation

(�;N ; ;; 0;>))

CDCL

(M

1

;N ;U

1

; k

1

;D

1

))

CDCL

: : :


ontains an in�nite number of Ba
ktra
k appli
ations.

8. CDCL never learns the same 
lause twi
e if Con
i
t sele
ts the smalles


lause out of N [ U .

Proof. 1.M is 
onsistent if it does does not 
ontain L and :L at the same time.

The rules Propagate, De
ide only add unde�ned literals to M . By an indu
tive

argument this holds also for Ba
ktra
k as it just removes literals from M and


ips one literal already 
ontained in M .

2. A learned 
lause is a always a resolvent of 
lauses from N [ U and even-

tually added to U where U is initially empty. By soundness of resolution (The-

orem 2.6.1) and an indu
tive argument it is enatailed by N .

3. A 
lause C 62 f>;?g 
an only o

ur after Con
i
t where M j= :C.

The rule Skip does not 
hange C and only deletes propagated literals from M

that are not 
ontained in C. By an indu
tive argument, if the rule Resolve is

applied to a state (M

0

L

D

0

_L

;N ;U ; k;D _ :L) where C = D _ :L resulting in

(M

0

;N ;U ; k;D_D

0

) thenM

0

j= :D be
auseM

0

j= :C andM

0

j= :D

0

be
ause

L was propagated with respe
t to M

0

and D

0

_ L.

4. Proof by indu
tion on the number n of propagated literals in M . Let

M = L

1

; : : : ; L

n

; L

n+1

. There are two rules that 
ould have added L

n+1

. (i) rule

Propagate: in this 
ase there is a 
lause C = D _ L

n+1

where L

n+1

was unde-

�ned in M and M j= :D. By indu
tion hypothesis for ea
h valuation A with

A j= N it holds that A(L

i

) = 1 for all i 2 f1; : : : ; ng. Sin
e all literals in D

appear negated in M with the indu
tion hypothesis it holds that all those liter-

als must have the truth value 1 in any valuation A. Therefore, for the 
lause C

to be true L

n+1

must be true as well in any valuation. It follows that for ea
h

valuation A it holds that A(L

i

) = 1 for all i 2 f1; : : : ; n + 1g. (ii) rule Ba
k-

tra
k: the state (M

1

K

i+1

M

2

;N ;U ; k;D_L

k

n+1

) whereM j= :(D_L

k

n+1

) (with

Proposition 2.9.4-3) and M

1

= L

1

: : : L

n

with only propagated literals be
omes

(M

1

L

D_L

n+1

n+1

;N ;U ; i;>). With the indu
tion hypothesis for ea
h valuation A

with A j= N it holds that A(L

i

) = 1 for all 1 � i � n i.e. in parti
ular it holds

that for ea
h literal L in D A(L) = 0 sin
e ea
h literal in D appears negated in

M

1

. Thus, for ea
h ea
h valuation A with A j= N A(L

n+1

) = 1 holds.
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5. Sin
e M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.9.4-4 for ea
h valuation A with A j= N it holds that A(L

j

) = 1 for

all 1 � j � n. Thus in parti
ular it holds that A(:K

i

) = 1 for all 1 � i � m.

ThereforeD is always false under any valuation A and N is always unsatis�able.

6. By the de�nition of the rules the state (M ;N ;U ; k;?) 
an only be rea
hed

if the rule Con
i
t has been applied to set some 
on
i
t 
lause C of a state

(M

0

;N ;U ; k;>) as the last 
omponent and Resolve is used in the last rule

appli
ation to derive?. Before the last 
all of Resolve the state had the following

form (ML

?_L

;N ;U ; k;:L) otherwise? 
ould not be derived.M 
annot 
ontain

any de
ision literal be
ause L is a propagated literal and due to the strategy

the rule Propagate is applied before the rule De
ide. With Proposition 2.9.4-5

it follows that N is unsatis�able.

7. Proof by 
ontradi
tion. Assume Ba
ktra
k is applied only �nitely often

in the in�nite tra
e. Then there exists an i 2 N

+

with R

j

6= Ba
ktra
k for all

j > i. Propagate and De
ide 
an only be applied as long as there are unde�ned

literals in M . Sin
e there is only a �nite number of propositional variables they


an only be applied �nitely often.

By de�nition the appli
ation of the rules Skip, Resolve and Ba
ktra
k is

pre
eded by an appli
ation of the rule Con
i
t sin
e the initial state has a

> as the last 
omponent and Con
i
t is the only rule that repla
es the last


omponent by a 
lause. For the rule Con
i
t to be applied in�nitely often the

last 
omponent has to 
hange to >. By de�nition that 
an only be performed

by the rules Resolve and Ba
ktra
k (a 
ontradi
tion to the assumption). For

Resolve assume the following rule appli
ation (ML

C_L

;N ;U ; k;D_:L))

CDCL

(M ;N ;U ; k;D _ C). For D _ C = > there must be a literal K with K;:K 2

(D _ C). With Proposition 2.9.4-3 M j= :(D _ C) holds whi
h is equivalent

to M j= ?,a 
ontradi
tion be
ause of Proposition 2.9.4-1. Therefore Con
i
t is

applied �nitely often.

Skip and Resolve are also applied �nitely often sin
e Con
i
t is applied

�nitely often and they 
annot be applied in�nitely often inter
hangeably. Oth-

erwise the �rst 
omponent M has to be of in�nite length, a 
ontradi
tion.

8. By Proposition 2.11.4.

Lemma 2.9.5. Assume the algorithm CDCL with all rules is applied using

the strategy eager appli
ation of Con
i
t and Propagate where Con
i
t is ap-

plied before Propagate. The CDCL algorithm has only 2 termination states:

(M ;N ;U ; k;>) where M j= N and (M ;N ;U ; k;?) where N is unsatis�able.

Proof. Let the CDCL algorithm terminate in a state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>).

1. Let � = ?. No rule 
an be applied and (M ;N ;U ; k;?) is indeed a termi-

nation state. With Proposition 2.9.4-6 it also holds that N is unsatis�able.

2. Let � = > and M j= N . Then the algorithm found a total valuation M

for N and no literal in N is unde�ned in M (otherwise we 
ould apply
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De
ide, 
ontradi
ting that the algorithm terminated). Sin
eM j= N there


an also be no 
on
i
t 
lause D. Hen
e, no further rule 
an be applied and

the state (M ;N ;U ; k;>) where M j= N is a termination state.

3. Let � = > andM j= N does not hold. Sin
eM j= N does not hold there is

either a 
lauseD 2 N withM j= :D or there is no su
h 
lauseD but there

is a literal in N that is unde�ned in M . For the �rst 
ase the rule Con
i
t

is appli
able and for the se
ond 
ase the rule De
ide is appli
able. Thus,

for both 
ases it holds that (M ;N ;U ; k;>) is not a termination state, a


ontradi
tion.

4. Let � be a 
lause C = D _L. With Proposition 2.9.4-3 the 
lause C must

be a 
on
i
ting 
lause where M j= :C.

If the rightmost literal in M is a propagated literal then the rules Skip or

Resolve are appli
able if their 
onditions are satis�ed. This would 
ontra-

di
t that the algorithm terminated. The 
ase that the 
onditions are not

satis�ed is handled in a similar way as the de
ided literal 
ase.

If the rightmost literal is a de
ision literal L then L is 
ontained in C. This

is due to the fa
t that with the assumed strategy before de
iding literal L

(via the rule De
ide) neither Propagate nor Con
i
t were appli
able. Thus,

L is of maximal level k and the remaining part of C 
an only be of a level

i with i < k. The same holds for the 
ase that the rightmost literal is a

propagated literal butD does not 
ontain a literal of level k and Skip is also

not appli
able. ThenD must again be of a level i with i < k and Lmust be

the literal of level k in C (otherwise, due to the strategy, the rule Con
i
t

would have been 
alled before the rule Propagate and the rightmost literal

in M 
ould not be the propagated literal L). Therefore, in both 
ases the

rule Ba
ktra
k is appli
able, 
ontradi
ting that the algorithm terminated.

Proposition 2.9.6 (CDCL Soundness). Assume the algorithm CDCL with all

rules is applied using the strategy eager appli
ation of Con
i
t and Propagate

where Con
i
t is applied before Propagate. The rules of the CDCL algorithm are

sound, i.e. whenever the algorithm terminates in state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>) then it holds thatM j= N i� N is satis�able.

Proof. ()) if M j= N and M is 
onsistent with Proposition 2.9.4-1 then N is

satis�able.

(() Proof by 
ontradi
tion. Assume N is satis�able and the algorithm ter-

minates in state (M ;N ;U ; k;�) starting from the initial state (�;N ; ;; 0;>).

Furthermore, assume M j= N does not hold. With Lemma 2.9.5 there are only

2 termination states, i.e. � 
an only be > or ?.

Case � = > then by Lemma 2.9.5 M j= N . This is a 
ontradi
tion to the

assumption that M j= N does not hold.

Case � = ? then by Lemma 2.9.5 N is unsatis�able. This is a 
ontradi
tion

to N being satis�able.
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Therefore all rules of the CDCL algorithm are sound.

Proposition 2.9.7 (CDCL Completeness). The CDCL rule set is 
omplete: for

any valuationM withM j= N there is a sequen
e of rule appli
ation generating

(M ;N ;U ; k;>) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sin
e M is a valuation there are no dupli
ates

in M and k appli
ations of rule De
ide yield (L

1

1

L

2

2

: : : L

k

k

;N ; ;; k;>) out of

(�;N ; ;; 0;>). Sin
e M j= N this is a �nal state and all literals from N are

de�ned in M . The rules Propagate and De
ide 
annot be applied anymore and

there is no 
on
i
t be
ause M j= N . Therefore Con
i
t, Skip, Resolve and

Ba
ktra
k are not appli
able. The rule Forget is not appli
able sin
e U = ; and

there is no need to restart.

C

As an alternative proof of Proposition 2.9.7 the strategy of an alter-

nation of an exhaustive appli
ation of Propagate and one appli
ation

of De
ide produ
es (M ;N ; ;; i;>) as a �nal state where M j= N .

As in the proof of Proposition 2.9.7 let M = L

1

L

2

: : : L

k

. First apply Prop-

agate m-times exhaustively resulting in (L

1

: : : L

m

;N ; ;; 0;>) where m � k.

With Proposition 2.9.4-4 the literals L

1

: : : L

m

must be true in any valuation

A with A j= N . Thus, if m = k then (L

1

: : : L

m

;N ; ;; 0;>) is a �nal state

and M j= N . If m < k then apply De
ide on
e on a literal from M resulting

in (L

1

: : : L

m

L

1

;N ; ;; 1;>). Sin
e L

1

is 
ontained in M it must be true. This

strategy 
an be applied equivalently to all further literals in M resulting in the

desired state.

Proposition 2.9.8 (CDCL Termination). Assume the algorithm CDCL with

all rules ex
ept Restart and Forget is applied using the strategy eager appli
ation

of Con
i
t and Propagate where Con
i
t is applied before Propagate. Then it

terminates in a state (M ;N ;U ; k;D) with D 2 f>;?g.

Proof. Proof by 
ontradi
tion. Assume there is an in�nite tra
e that starts in a

state (M

0

;N ;U

0

; k

0

;D

0

). With Proposition 2.9.4-?? and 2.9.4-8 there 
an only be

a �nite number of 
lauses that are learned during the in�nite run. By de�nition

of the rules only the rule Ba
ktra
k 
auses that a 
lause is learned so that the

rule Ba
ktra
k 
an only be applied �nitely often. But with Proposition 2.9.4-7

the rule Ba
ktra
k must be applied in�nitely often, a 
ontradi
tion. Therefore

there does not exist an in�nite tra
e, i.e. the algorithm always terminates under

the given assumptions.

The CDCL rule set does not in general terminate. This is due to the rules

Restart and Forget. If they are applied only �nitely often then the algorithm

terminates. At some point the last appli
ation of Restart and Forget was rea
hed

sin
e they are only applied �nitely often. From this point onwards Proposition

2.9.8 
an be applied and the algorithm eventually terminates.
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Example 2.9.9 (CDCL Termination I). Consider the 
lause set N = fP _

Q;:P _ Q;:Qg. The CDCL algorithm does not terminate due to the rule

Restart.

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

CDCL

: : :

Example 2.9.10 (CDCL Termination II). Consider the 
lause set N = f:P _

Q_:R;:P _Q_Rg. The CDCL algorithm does not terminate due to the rule

Forget.

(�;N ; ;; 0;>)

)

De
ide

CDCL

(P

1

;N ; ;; 1;>)

)

De
ide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Con
i
t

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _ R)

)

Resolve

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Ba
ktra
k

CDCL

(P

1

;N ; f:P _Qg; 1;>)

)

Forget

CDCL

(P

1

;N ; ;; 1;>)

)

De
ide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Con
i
t

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _ R)

)

CDCL

: : :

C

As an alternative for the proof of Proposition 2.9.8 the termination


an be shown by assigning a well-founded measure � and proving that

it de
reases with ea
h rule appli
ation ex
ept for the rules Restart and

Forget. Let n be the number of propositional variables in N . The domain for

the measure � is N � f0; 1g� N.

�((M ;N ;U ; k;D)) =

�

(3

n

� 1� jU j; 1; n� jM j) ; D = >

(3

n

� 1� jU j; 0; jM j) ; else

The well-founded ordering is the lexi
ographi
 extension of < to triples.

What remains to be shown is that ea
h rule appli
ation ex
ept Restart and

Forget de
reases �. This is done via a 
ase analysis over the rules:
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Propagate:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

C_L

j)

= �((ML

C_L

;N ;U ; k;>))

De
ide:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

k+1

j)

= �((ML

k+1

;N ;U ; k;>))

Con
i
t:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))

Skip:

�((ML

C_L

;N ;U ; k;D)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))

Resolve:

�((ML

C_L

;N ;U ; k;D _ :L)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D _ C))

Ba
ktra
k: with Proposition 2.9.4-8 it holds that D_L 62 U so that the �rst


omponent de
reases.

�((M

1

K

i+1

M

2

;N ;U ; k;D _ L)) = (3

n

� 1� jU j; 0; jM

1

K

i+1

M

2

j)

> (3

n

� 1� jU [ fD _ Lgj; 1; n� jM

1

L

D_L

j

= �((M

1

L

D_L

;N ;U [ fD _ Lg; i;>))

2.10 Implementing CDCL

For an e�e
tive CDCL implementation the underlying data stru
ture of the im-

plementation plays a 
ru
ial part. The te
hnique that proved to be very su

ess-

ful in modern SAT solvers and that is also used in a CDCL implementation is the

2-wat
hed literals data stru
ture. For 
hoosing the de
ision variables a spe
ial

heuristi
 plays an important role in the implementation as well. This heuris-

ti
 is 
alled VSIDS (Variable State Independent De
aying Sum) that works on

natural numbers. Furthermore, the de
ision for 
hoosing the most reasonable


lause to be learned after a dis
overed 
on
i
t is handled by the notion of UIPs

(Unique Impli
ation Points). In the following these main 
on
epts (2-wat
hed

literals, VSIDS and 1UIP s
heme) will be introdu
ed in a

ordan
e with the

CDCL rule set.
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.

.

.

P

.

.

.

P R

. . .

Q

:P

. . .


lause


lauses with P


lauses with :P


lause

Figure 2.10: The wat
hed literals list with the variables P;Q;R and the wat
hed

literals P , R and :P , Q.

2.10.1 Lazy Data Stru
ture: 2-Wat
hed Literals (2WL)

For applying the rule Propagate, the number of literals in ea
h 
lause that are

not false need to be known. Maintaining this number is expensive, however,

sin
e it has to be updated whenever Ba
ktra
k is applied. Therefore, the better

approa
h is to use a more eÆ
ient representation 
alled 2-wat
hed literals. A

list as represented in Figure 2.10 has referen
es for ea
h variable P to 
lauses

where P o

urs positive and referen
es to 
lauses where P o

urs negative. A

variable is either unassigned, true or false. For ea
h 
lause within the 
lause list

2 wat
hed (unassigned) variables are maintained. The way of working with the

wat
hed literals is as follows:

1. Let an unassigned variable P be set to false (or true).

2. Visit all 
lauses in whi
h P (or :P ) is wat
hed.

3. In every 
lause where P (or :P ) is wat
hed �nd an unwat
hed and non-

falsi�ed variable to be wat
hed. If there is no other unassigned or true

variable then this 
lause is either a unit 
lause and the rule Propagate 
an

be applied or there is a 
on
i
t and the rule Ba
ktra
k is applied or the


lause set is already satis�ed.

An advantage of the data stru
ture as shown in the example below is no

extra 
ost for variables that are not wat
hed (but assigned false).

As an example 
onsider the formula � = f:P _Q_ :R _ :S _ T;:P _Q_

:T;R_T; S_Tg. Figure 2.13 shows how to derive unit 
lauses and �nally satisfy

the formula within the wat
hed literals data stru
ture. The wat
hed literals are

the �rst two entries in a 
lause. The trail (see next se
tion on Ba
ktra
king)

represents the assigned literals for the 
urrent state.
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.

.

.

P

.

.

.

NULL

:P

Q

:T

:P

Q

:R :S T

(a) Initialized 2WL data stru
ture for the literal P and the 
urrent

trail is empty.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(b) After de
iding P the wat
hed literals have 
hanged and the 
ur-

rent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

(
) After de
iding :Q the unit 
lause f:P _Q_:Tg is a
hieved and

the 
urrent trail is: P;:Q.
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.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(d) After propagating :T; R and S the 
urrent trail is:

P;:Q;:T; R;S and the 
lause f:P _Q_:R_:S _ Tg evaluates to

false, a 
on
i
t.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(e) After ba
ktra
king S;R; T; Q the 
urrent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

(f) After propagating Q and de
iding S the trail is: P;Q; S.
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.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(g) After de
iding :T and propagating R the trail is: P;Q;S;:T;R.

Figure 2.13: The wat
hed literals list for the formula � = f:P _Q_:R_:S _

T;:P _Q_:T;R_T; S _Tg before and after de
iding / propagating variables

with a fo
us on the literal P .

2.10.2 Ba
ktra
king

Another main advantage of the 2-wat
hed literals data stru
ture is dis
overed

when 
onsidering ba
ktra
king. For this purpose a trail, a de
ision level and a


ontrol sta
k are maintained together with the wat
hed literals data stru
ture.

The trail is a sta
k of variables that stores the order in whi
h the variables

are assigned. The de
ision level 
ounts the number of 
alls of the rule De
ide.

The 
ontrol sta
k stores the trail height for ea
h de
ision level, i.e. on
e De
ide

is applied the 
ontrol sta
k in
reases by one entry and saves the height of the

previous trail sta
k.

If the rule Ba
ktra
k is applied the trail height entry from the 
ontrol sta
k is

taken and every variable from that trail height on will be unassigned, i.e. every

assignment value that was made sin
e the last appli
ation of the rule De
ide is

deleted. A detailed example is shown in Figure 2.14. Again, the advantage with

the wat
hed literals data stru
ture is that the wat
hed variables stay un
hanged

and will not be 
onsidered by this ba
ktra
king step.

2.10.3 Dynami
 De
ision Heuristi
: VSIDS

Choosing the right unassigned variable to de
ide is important for eÆ
ien
y, but

the heuristi
 may be expensive itself. Therefore, the aim is to use a heuristi


that needs not to be re
omputed too often, that for example 
hooses variables

whi
h o

ur frequently and prefers variables from re
ent 
on
i
ts.

The VSIDS (Variable State Independent De
aying Sum) is su
h a heuristi
.

The strategy is as follows:

1. Initially assign ea
h variable a s
ore e.g. its number of o

urren
es in the

formula.
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0

de
ision

level

0


ontrol

sta
k

trail

(a) The initial entries.

1

de
ision

level

0


ontrol

sta
k

trail

0

P

(b) After de
iding P.

2

de
ision

level

0


ontrol

sta
k

trail

0

1

P

:Q

(
) After de
iding :Q.

2

de
ision

level

0


ontrol

sta
k

trail

0

1

P

:Q

:T

S

:R

(d) After propagating :T, S and :R.

1

de
ision

level

0


ontrol

sta
k

trail

0

P

(e) After ba
ktra
king.

Figure 2.14: The entries for de
ision level, 
ontrol sta
k and trail for the formula

� = fS _Q;P _Q;:P _ R _ :S;:P _ :R _ T;:P _Q _ :Tg.

2. Adjust the s
ores during a CDCL run: whenever a 
on
i
t 
lause is re-

solved with another 
lause the resolved variable gets its s
ore in
reased by

a bonus d, initially d = 1 and d in
reases with every 
on
i
t: d = d

6

5

de.

3. Furthermore, whenever a 
lause is learned the s
ore of the variables of this


lause is additionally in
reased by adding d to its s
ore.

4. As soon as a variable s
ore s or d rea
hes a 
ertain limit k, e.g. k = 2

60

,

all variables get their s
ore res
aled by a 
onstant, e.g. s = ds � 2

60

e. At

this point d is also res
aled: d = dd � 2

�50

e.

5. At a de
ision point with probability

1

50


hoose a variable at random. In

the other 
ases 
hoose an unassigned variable with the highest s
ore.

The heuristi
 has very low overhead sin
e it is independent of variable as-

signments whi
h makes it a fast strategy. Furthermore, it favors variables that

satisfy the most possible number of 
lauses and prefers variables that are more

involved in 
on
i
ts.

2.10.4 Con
i
t Analysis and Learning: 1UIP s
heme

If a 
on
i
ting 
lause is found, the algorithm needs to derive a new 
lause from

the 
on
i
t and add it to the 
urrent set of 
lauses. But the problem is that this

may produ
e a large number of new 
lauses, therefore it be
omes ne
essary to


hoose a 
lause that is most reasonable.
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This se
tion examines how to derive su
h a 
on
i
t 
lause on
e a 
on
i
t

is dete
ted. The key idea is to �nd an asserting 
lause that in
ludes the �rst

UIP (Unique Impli
ation Point). For this purpose the 
on
ept of impli
ation

graphs is required and hen
e de�ned �rst. An impli
ation graph G = (V;E) is

a dire
ted graph with a node set V and an edge set E. Ea
h node has the form

l=L, whi
h means that the variable L was set to a value (either true or false)

at the de
ision level l either via the rule Propagate or De
ide. If a variable L

of a node n was set via the rule Propagate with 
lause C = D _ L then there

must be an edge from every node of the variables in D to n. This means that

the variables from D imply L. In parti
ular, de
ision variable nodes have no

in
oming edges. A 
ut of an impli
ation graph is a partition of the graph into

two nonempty sets su
h that the de
ision variable nodes will be in a di�erent

set than the 
on
i
t node. Every edge that 
rosses a spe
i�
 
ut will be part

of a 
on
i
t set, i.e. the number of 
uts denotes the number of 
on
i
t sets.

There is a total of 2

n�k

possible 
uts, where n = # variables and k = level of


on
i
t 
lause (= # de
ision variables). A UIP in the graph is a variable of the


on
i
t level l that lies on every path from the de
ision variable of level l and

the 
on
i
t. The �rst UIP (1UIP) is a UIP that lies 
losest to the 
on
i
t in

the impli
ation graph. The strategy for deriving the most useful 
on
i
t 
lause

is as follows:

1. Constru
t the impli
ation graph a

ording to a given set of 
lauses, a for-

mula �. As an example 
onsider Figure 2.15 that depi
ts an impli
ation

graph of the formula � = fS_Q;P _Q;:P _R_:S;:P _:R_T;:P _Q_

:Tg where the node 1=; denotes a 
on
i
t. The 
orresponding trail, 
on-

trol sta
k and de
ision level are shown in Figure 2.14. The 
orresponding

wat
hed literals list is shown in Figure 2.19.

2. Identify the 
on
i
t sets by means of the impli
ation graph, i.e. the 
uts

of the graph need to be 
onsidered. In Figure 2.15 there are three 
uts

depi
ted representing the following 
on
i
t sets: fP;:Qg; fP;:T; Sg and

fP;:R;Sg.

3. Choose the most useful 
lause from the set of all 
on
i
ts. It proved to be

most e�e
tive to 
hoose a 
lause that has exa
tly one variable that was

assigned at the same de
ision level in whi
h the 
on
i
t arose. This is why

the 
lause is also 
alled asserting 
lause. If there is more than one asserting


lause for a 
on
i
t as in Figure 2.15, then take the asserting 
lause that


ontains the 1UIP. In Figure 2.16 there is only one UIP whi
h is also the

1UIP that is :Q. Therefore, the most useful 
lause from the 
on
i
t set

is fP;:Qg.

4. Learn the 
lause: After determining the asserting 
lause C with the 1UIP

the a
tual 
on
i
t 
lause is obtained by negating all assignments of the

variables within 
lause C. This 
on
i
t 
lause will eventually be learned

by adding it to the set of 
lauses of the original formula �. In the example

from Figure 2.15 the 
lause :P _Q will be learned.
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2/:Q

1/P

2/:T

2/S

2/:R 2/;


ut 1 
ut 2 
ut 3

Figure 2.15: An impli
ation graph for the formula � with 
uts.

2/:Q

1UIP

1/P

2/:T

2/S

2/:R 2/;

Figure 2.16: The impli
ation graph denoted with the 1UIP.

The 
ombination of 
on
i
t analysis and non-
hronologi
al ba
ktra
king en-

sures that the learned 
lause be
omes a unit 
lause and thereby preventing the

solver from making the same mistakes over again.

2.10.5 Restart and Forget

As mentioned in the se
tion on VSIDS (see 2.10.3) the runtime of the CDCL

implementation depends on the 
hoi
e of the de
ision variable. In 
ase no suit-

able variable is found within a 
ertain time limit it might be useful to apply

a restart, another important te
hnique applied in the CDCL implementation.

With the rule Restart all 
urrently assigned variables will be
ome unassigned

while learned 
lauses will be maintained. The motivation for this te
hnique has

to do with the fa
t that the solver 
an rea
h a point where in
orre
t variable

assignments were made and the solver is not able to resolve within a reasonable

amount of time the literals that are needed to �nd a 
on
i
t. In that 
ase a

restart is performed intending to make better variable assignments earlier on

with the previous learned information.

A further te
hnique that 
ontributes to the performan
e of the CDCL solver
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P

Q

R

S

T :P

Q

:T

S

Q

:P R :S

:P :R T

P

Q

NULL

(a) The initial state and the 
urrent trail is empty.

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(b) After de
iding P wat
hed literals are swapped, the trail is: P .

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(
) After de
iding :Q, no 
hange in the wat
hed literals, the trail is: P;:Q.
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P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(d) After propagating :T; S and :R, no 
hange of wat
hed literals but a 
on
i
t o

urs

in :P _ R _ S, the trail is: P;:Q;:T; S;:R.

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(e) After ba
ktra
king the literals :Q;:T; S;:R, the trail is: P .
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P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

:P

Q

(f) After learning the 
lause :P _Q, the trail is still P .

Figure 2.19: The wat
hed literals list a

ording to the impli
ation graph from

Figures 2.15 and 2.16 as well as the 
ontrol sta
k, trail and de
ision level of

Figure 2.14.

is the rule Forget. With every 
on
i
t 
lause the number of learned 
lauses

in
reases. Re
ording all learned 
lauses 
an be very expensive espe
ially if some


lauses are repeatedly stored or if some 
lauses are subsumed by others. As a

result, this 
an lead to an exhaustion of available memory and to an additional

overhead. Therefore deleting suitable 
lauses from the learned 
lause set 
an be

useful. The 
riteria by whi
h the rule Forget is applied are the following: either

if the number of learned 
lauses is 4 times the number of original 
lauses or

if a spe
i�
 maximum number of learned 
lauses is rea
hed that is previously

given. In both 
ases the minimum of the following 2 
ases is exe
uted: either

half of the learned 
lauses are deleted or all learned 
lauses are deleted until a


lause is rea
hed that implies or has implied a 
urrent assignment. Furthermore,

an implementation 
ould also 
he
k the subsumption of learned 
lauses over

existing 
lauses but this 
he
k is often omitted due to performan
e reasons.

2.10.6 Algorithm and Strategy

As shown in the examples 2.9.1 and 2.9.2 a 
ertain CDCL rule appli
ation

order 
an improve the performan
e of the rule-based CDCL algorithm. The

algorithm 5 depi
ts the strategy where Con
i
t is preferred over Propagate and

Propagate over any other rule. In general the rules De
ide and Propagate should

not be applied when a 
on
i
t already exists. For otherwise, the additional

literals that are added via De
ide or Propagate be
ome useless and will be
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deleted again when ba
ktra
king. Therefore the appli
ation of the rule Con
i
t

is 
he
ked before any other rule. The statements from line 1 onwards des
ribe

the a
tual strategy, i.e. Con
i
t is always preferred over any other rule and

Propagate is preferred over De
ide. The reason why the rules Skip and Resolve

are always applied ex
essively on
e a 
on
i
t was found is due to �nding the


lause with the 1UIP of the 
on
i
t level. The rule Skip is applied to those

literals that are not involved in the 
on
i
t. Via the rule Resolve the 
on
i
t


lause is resolved with 
lauses that implied the 
on
i
t and thereby yielding

a new potentially learned 
lause. On
e both rules 
annot be applied anymore

the state is either a fail state, Ba
ktra
k 
annot be applied and the algorithm

returns the fail state (M ;N ;U ; k;?) or the state is not a fail state and the


on
i
t 
lause with the 1UIP was found. In the latter 
ase the 
urrent 
on
i
t


lause will be learned via the rule Ba
ktra
k. At this point it is 
he
ked whether

the total number of approa
hed 
on
i
ts rea
hed a 
ertain limit, i.e. a restart is

ne
essary, indi
ating that the solver needs too mu
h time dete
ting an in
orre
t

value assignment that was previously made. Sin
e the number of learned 
lauses

in
reases with every 
on
i
t it is also 
he
ked whether previously learned 
lauses


an be deleted, i.e. forget is ne
essary. In 
ase the 
urrent state has no 
on
i
t,

the rule Propagate is preferred over the rule De
ide in line 15 sin
e the 
han
es

of taking wrong de
isions when de
iding a literal's truth value de
reases. The

rule De
ide takes the value of the VSIDS heuristi
 for the 
urrent state into

a

ount.

Algorithm 5: CDCL(S)

Input : An initial state (�;N ; ;; 0;>).

Output: A �nal state S = (M ;N ;U ; k;>) or S = (M ;N ;U ; k;?)

1 while (any rule appli
able) do

2 ifrule (Con
i
t(S)) then

3 while (Skip(S) k Resolve(S)) do

4 update VSIDS s
ores on resolved literals;

5 end

6 update VSIDS s
ores on learned 
lause;

7 Ba
ktra
k(S);

8 s
ale VSIDS s
ores;

9 if (forget heuristi
) then

10 Forget(S) redundant 
lauses ;

11 Restart(S);

12 else

13 ifrule (!Propagate(S)) then

14 De
ide(S);

15

16

17 end

18 return(S);
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2.11 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)


al
ulus is not su

essful in pra
ti
e whereas most of the su

essful SAT solvers

implemented in 2012 are based on CDCL. In this se
tion I will develop some

relationships between superposition and CDCL.

The start is a modi�
ation of the superposition model operator, De�ni-

tion 2.7.5. The goal of the original model operator is to 
reate minimal models

with respe
t to positive literals, i.e., if N

I

j= N for some N , then there is no

M

0

� N

I

su
h that M

0

j= N . However, if the goal generating minimal models

is dropped, then there is more freedom to 
onstru
t the model while preserving

the general properties of the superposition 
al
ulus. So, let's assume a heuristi


H that sele
ts whether a literal should be produ
tive or not.

De�nition 2.11.1 (Heuristi
-Based Partial Model Constru
tion). Given a


lause setN , an ordering � and a variable heuristi
H : �! f0; 1g, the (partial)

model N

H

�

for N and signature �, with P;Q 2 � is indu
tively 
onstru
ted as

follows:

N

H

P

:=

S

Q�P

Æ

H

Q

Æ

H

P

:=

8

>

>

<

>

>

:

fPg if (D _ P ) 2 N;P stri
tly maximal and N

H

P

6j= D or

H(P ) = 1 and for all 
lauses (C _ :P ) 2 N;C � :P

it holds N

H

P

j= C

; otherwise

N

H

�

:=

S

P2�

Æ

H

P

T

Please note that N

I

is de�ned indu
tively over the 
lause ordering �

whereas N

H

�

is de�ned indu
tively over the atom ordering �.

Proposition 2.11.2. If H(P ) = 0 for all P 2 � then N

I

= N

H

�

for

any N .

Proof. The proof is by 
ontradi
tion. Assume N

I

6= N

H

�

, i.e., there is a minimal

P 2 � su
h that P o

urs only in one set out of N

I

and N

H

�

.

Case 1: P 2 N

I

but P 62 N

H

�

.

Then there is a produ
tive 
lause D = D

0

_ P 2 N su
h that P is stri
tly

maximal in this 
lause andN

D

6j= D

0

. Sin
e P is stri
tly maximal in D the 
lause

D

0

only 
ontains literals stri
tly smaller than P . Sin
e both interpretations agree

on all literals smaller than P from N

D

6j= D

0

it follows N

H

P

6j= D

0

and therefore

Æ

H

P

= fPg 
ontradi
ting P 62 N

H

�

.

Case 2: P 62 N

I

but P 2 N

H

�

.

Then there is a produ
tive 
lause D = D

0

_ P 2 N su
h that P is stri
tly

maximal in this 
lause and N

H

P

6j= D

0

be
ause H(P ) = 0. Sin
e P is stri
tly

maximal in D the 
lause D

0

only 
ontains literals stri
tly smaller than P . Sin
e
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both interpretations agree on all literals smaller than P fromN

H

P

6j= D

0

it follows

N

D

6j= D

0

and therefore Æ

D

= fPg 
ontradi
ting P 62 N

I

.

So the new model operator N

H

�

is a generalization of N

I

. Next, I will show

that with the help of N

H

�

a 
lose relationship between the model operator run

by the CDCL 
al
ulus and the superposition model operator 
an be established.

This result 
an then further be used to relate the abstra
t superposition redun-

dan
y 
riteria to CDCL. But before going into the relationship I �rst show that

the generalized superposition partial model operator N

H

�

supports the standard

superposition 
ompleteness result, analogous to Theorem 2.7.9. Re
all that the

same notion of redundan
y, De�nition 2.7.3, is used.

Theorem 2.11.3. If N is saturated up to redundan
y and ? =2 N then N is

satis�able and N

H

�

j= N .

Proof. The proof is by 
ontradi
tion. So I assume (i) any 
lause C derived by

Superposition Left or Fa
toring from N that C is redundant, i.e., N

�C

j= C,

(ii) ? =2 N and (iii) N

H

�

6j= N . Then there is a minimal, with respe
t to �,


lause C

1

_L 2 N su
h that N

I

6j= C

1

_L and L is a maximal literal in C

1

_L.

This 
lause must exist be
ause ? =2 N .

The 
lause C

1

_ L is not redundant. For otherwise, N

�C

1

_L

j= C

1

_ L and

hen
e N

H

�

j= C

1

_ L, be
ause N

H

�

j= N

�C

1

_L

, a 
ontradi
tion.

I distinguish the 
ase whether L is a positive or a negative literal. Firstly,

assume L is positive, i.e., L = P for some propositional variable P . Now if P is

stri
tly maximal in C

1

_ P then a
tually Æ

H

P

= fPg and hen
e N

H

P

j= C

1

_ P , a


ontradi
tion. So P is not stri
tly maximal. But then a
tually C

1

_ P has the

form C

0

1

_ P _ P and Fa
toring derives C

0

1

_ P where (C

0

1

_ P ) � (C

0

1

_ P _ P ).

Now C

0

1

_P is not redundant, stri
tly smaller than C

1

_L, we have C

0

1

_P 2 N

and N

H

�

6j= C

0

1

_ P , a 
ontradi
tion against the 
hoi
e that C

1

_ L is minimal.

Se
ondly, assume L is negative, i.e., L = :P for some propositional variable

P . Then, sin
e N

H

�

6j= C

1

_:P we know P 2 N

I

, i.e., Æ

H

P

= fPg. There are two


ases to distinguish. Firstly, there is a 
lause C

2

_ P 2 N where P is stri
tly

maximal and by de�nition (C

2

_ P ) � (C

1

_ :P ). So a Superposition Left

inferen
e derives C

1

_ C

2

where (C

1

_ C

2

) � (C

1

_ :P ). The derived 
lause

C

1

_ C

2


annot be redundant, be
ause for otherwise either N

�C

2

_P

j= C

2

_ P

or N

�C

1

_:P

j= C

1

_ :P . So C

1

_ C

2

2 N and N

H

�

6j= C

1

_ C

2

, a 
ontradi
tion

against the 
hoi
e that C

1

_L is minimal. Se
ondly, there is no 
lause C

2

_P 2 N

where P is stri
tly maximal but H(P ) = 1. But a further 
ondition for this 
ase

is that there is no 
lause (C

1

_ :P ) 2 N su
h that N

H

P

6j= C

1


ontradi
ting the

above 
hoi
e of C

1

_ :P .

Re
alling Se
tion 2.7 Superposition is based on an ordering �. It relies

on a model assumption N

I

, De�nition 2.7.5 or its generalization N

H

�

, De�-

nition 2.11.1. Given a set N of 
lauses, either N

I

(N

H

�

) is a model for N , N


ontains the empty 
lause, or there is an inferen
e on the minimal false 
lause

with respe
t to �, see the proof of Theorem 2.7.9 or Theorem 2.11.3, respe
-

tively.
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CDCL is based on a variable sele
tion heuristi
. It 
omputes a model as-

sumption via de
ision variables and propagation. Either this assumption is a

model of N , N 
ontains the empty 
lause, or there is a ba
kjump 
lause that is

learned.

For a CDCL state (M;N;U; k;D) generated by an appli
ation of the rule

Con
i
t, whereM = L

1

; : : : ; L

n

any following Resolve step a
tually 
orresponds

to a superposition step between a minimal false 
lause and its produ
tive 
oun-

terpart, where atom(L

1

) � atom(L

2

) � : : : � atom(L

n

). Furthermore, for a

positive de
ision literal L

>

m

o

urring in M the heuristi
 H(atom(L

m

)) = 1 and

H(atom(L

m

)) = 0 otherwise. Then the learned 
lause is in fa
t generated by su-

perposition with respe
t to the model operator N

H

�

. The following propositions

present this relationship between Superposition and CDCL in full detail.

Proposition 2.11.4. Let (M;N;U; k;D) be a CDCL state generated by a

strategy with eager appli
ation of Con
i
t and Propagate, in this order. LetM =

L

1

; : : : ; L

n

, H(atom(L

m

)) = 1 for any positive de
ision literal L

>

m

o

urring in

M and H(atom(L

m

)) = 0 otherwise. The superposition ordering is atom(L

1

) �

atom(L

2

) � : : : � atom(L

n

). Then

1. L

n

is a propagated literal.

2. The resolvent between C _:L

k

and the 
lause C

0

_L

k

propagating L

k

is

a superposition inferen
e and the 
on
lusion is not redundant.

Proof. 1. Assume L

n

is a de
ision literal. Then, sin
e Con
i
t and Propagation

are applied eagerly,D has the formD = D

0

_:L

n

. But then at trail L

1

; : : : ; L

n�1

the 
lause D

0

_ :L

n

propagates :L

n

with respe
t to L

1

: : : L

n�1

, so with ea-

ger propagation, the literal L

n


annot be de
ision literal but its negation was

propagated by a 
lause D

0

_ :L

n

2 N .

2. Both C and C

0

only 
ontain literals with variables from atom(L

1

);

: : : ; atom(L

k�1

). Sin
e we assume dupli
ate literals to be removed and tau-

tologies to be deleted, the literal :L

k

is stri
tly maximal in C _ :L

k

and L

k

is stri
tly maximal in C

0

_ L

k

. So resolving on L

k

is a superposition inferen
e

with respe
t to the variable ordering atom(L

1

) � atom(L

2

) : : : � atom(L

k

).

Now assume C_C

0

is redundant, i.e., there are 
lauses D

1

; : : : ; D

n

from N with

D

i

� C _C

0

and D

1

; : : : ; D

n

j= C _C

0

. Sin
e C _C

0

is false in L

1

: : : L

k�1

there

is at least one D

i

that is also false in L

1

: : : L

k�1

. A 
ontradi
tion against the

assumption that L

1

: : : L

k�1

does not falsify any 
lause in N , i.e., rule Con
i
t

was applied eagerly.

Proposition 2.11.4 is a
tually a ni
e explanation for the eÆ
ien
y of the

CDCL pro
edure: a learned 
lause is never redundant. Re
all that redundan
y

here means that the learned 
lause C is not entailed by smaller 
lauses in N[U .

Furthermore, the ordering underlying Proposition 2.11.4 is based on the trail,

i.e., it 
hanges during a CDCL run. For superposition it is well known that


hanging the ordering is not 
ompatible with the notion of redundan
y, i.e.,

superposition is in
omplete when the ordering may be 
hanged in�nitely often

and the superposition redundan
y notion is applied.
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Example 2.11.5. Consider the superposition left inferen
e between the 
lauses

P _Q and R _ :Q with ordering P < R < Q resulting in P _R. Changing the

ordering to Q < P < R the inferen
e P _ R be
omes redundant. So 
ipping

in�nitely often between P < R < Q and Q < P < R is already suÆ
ient to

prevent any saturation progress.

Although Example 2.11.5 shows that 
hanging the ordering is not 
ompati-

ble with redundan
y and superposition 
ompleteness, Proposition 2.11.4 proves

that any CDCL learned 
lause is not redundant in the superposition sense and

the CDCL pro
edure 
hanges the ordering and is 
omplete. This relationship

shows the power of reasoning with respe
t to a model assumption. The model

assumption a
tually prevents the generation of redundant 
lauses. Nevertheless,

also in the CDCL framework 
ompleteness would be lost if redundant 
lauses

are eagerly removed in general. So either the ordering is not 
hanged and the

superposition redundan
y notion 
an be eagerly applied or only a weaker notion

of redundan
y is possible while keeping 
ompleteness.

The 
ru
ial point is that for the superposition 
al
ulus the ordering is also

the bases for termination and 
ompleteness. If the 
ompleteness proof 
an be

de
oupled from the ordering, then the ordering might be 
hanged in�nitely often

and other notions of redundan
y be
ome available. However, these new notions

of redundan
y need to be 
ompatible with the 
ompleteness, termination proof.

De�nition 2.11.6 (Abstra
t Length Redundan
y). A 
lause C is length redun-

dant with respe
t to a 
lause set N if N

�jCj

j= C, where N

�jCj

= fD j jDj �

jCjg.

Theorem 2.11.7 (Length Redundan
y and Superposition). Arbitrary Order-

ing Changes plus fairness plus length redundan
y preserves 
ompleteness.

Theorem 2.11.8 (Length Redundan
y and CDCL). At any time length re-

dundant 
lauses may be removed.

2.12 Redundan
y

One of the most su

essful and robust heuristi
s is to keep the formula, 
lause

set \small". This heuristi
 is already the motivation for the spe
i�
 renaming

algorithm presented in Se
tion 2.5.3. So getting rid of super
uous, i.e., redun-

dant formulas or 
lauses is typi
ally bene�
ial to any eÆ
ient reasoning. The

se
tion on normal form transformation (Se
tion 2.5) and the se
tions on CDCL

and superposition already introdu
ed some redundan
y 
riteria. In this se
tion

they are extended for the 
ase of 
lause sets.

There is an important di�eren
e between 
lause redundan
y before a CDCL

or superposition 
al
ulus starts reasoning and 
lause redundan
y while the 
al-


ulus (superposition, CDCL) is operating on a set of 
lauses. For the former

it is suÆ
ient that the redundan
y pro
edure is sound and terminating. For

the latter the pro
edure has in addition to respe
t the redundan
y notion of

the respe
tive 
al
ulus in order to preserve 
ompleteness, see De�nition 2.7.3,

Example 2.11.5, and Theorem 2.11.8, Theorem 2.11.7.
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2.12.1 Redundan
y before Superposition and CDCL

Here are some standard rules for removing redundant 
lauses before superposi-

tion or CDCL starts. Subsumption, Tautology Deletion and Subsumption Res-

olution have already been introdu
ed in Se
tion 2.7. Purity and Blo
ked Clause

Deletion are new.

Subsumption Deletion

(N ℄ fC

1

; C

2

g) )

RBSC

(N [ fC

1

g)

provided C

1

� C

2

Tautology Deletion

(N ℄ fC _ P _ :Pg) )

RBSC

(N)

Subsumption Resolution

(N ℄ fC

1

_ L;C

2

_ Lg) )

RBSC

(N [ fC

1

_ L;C

2

g)

where C

1

� C

2

Purity

(N ℄ fC

1

_ L; : : : ; C

k

_ Lg) )

RBSC

(N)

where L, L do not o

ur in N

Blo
ked Clause Elimination

(N ℄ fC

1

_ L; : : : ; C

k

_ L;C

0

1

_ L; : : : ; C

0

l

_ Lg) )

RBSC

(N)

where L, L do not o

ur in N and all resolvents on L between any C

i

_ L and

C

0

j

_ L result in tautologies

Example 2.12.1. Consider a 
lause set 
onsisting of the �ve 
lauses

(1) P _Q

(2) P _Q _ R _ S

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Clause (1) subsumes 
lause (2). Subsumption resolution is appli
able to


lause (2) and 
lause (5) resulting in P _ R _ S. Purity is appli
able to P .

Blo
ked 
lause elimination is not appli
able.

Applying �rst subsumption deletion results in the 
lauses

(1) P _Q

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Now subsumption resolution is no longer appli
able, but blo
ked 
lause elimina-

tion is to R and 
lauses (3), (4). After appli
ation of blo
ked 
lause elimination

the resulting 
lauses are

(1) P _Q

(5) :Q _ S

Now P and S are pure and after applying purity the result is the empty set of


lauses indi
ating satis�ability.
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For the above Example 2.12.1 other rule appli
ation orderings are possible,

e.g., starting with purity on P . Nevertheless, any appli
ation ordering results in

an empty set of 
lauses. However, )

RBSC

is not 
on
uent.

Lemma 2.12.2 ()

RBSC

terminates).

Proof. Exer
ise

Lemma 2.12.3 ()

RBSC

is sound). If (N))

RBSC

(N

0

) then N is satis�able i�

N

0

is.

Proof. ): All rules remove 
lauses ex
ept subsumption resolution. Removing


lauses obviously preservers satis�ability. For subsumption resolution any model

satisfying C

1

_ L and C

2

_ L has to satisfy C

1

ot C

2

. Sin
e C

1

� C

2

it satis�es

C

2

.

(: The dire
tion is obvious for Subsumption Deletion, Tautology Deletion, and

Subsumption Resolution. Sin
e, a
tually, Purity is a spe
ial 
ase of Blo
ked

Clause Elimination, it suÆ
es to show the 
ase of Blo
ked Clause Elimination.

In this 
ase N = N

0

℄ fC

1

_L; : : : ; C

k

_L;C

0

1

_L; : : : ; C

0

l

_Lg and L, L do not

o

ur in N

0

and all resolvents on L between any C

i

_ L and C

0

j

_ L result in

tautologies. Let A be a model for N

0

. Obviously, being A a model for N does

not depend on the truth value of L, be
ause neither L nor L o

urs in N . If A

does not satisfy some 
lause C

i

_ L (analogously C

0

j

_ L), then A(L) = 0 and

A(C

i

) = 0. Sin
e all 
ombinations C

i

_C

0

j

, for any j are tautologies, A(C

0

j

) = 1

for all j. Hen
e A

0

whi
h is like A ex
ept that A

0

(L) = 1 is a model for N .

2.12.2 Redundan
y while Superposition and CDCL

2.13 Complexity

This book does not fo
us on 
omplexity but on how to build systems that are

useful for sele
ted appli
ations. Nevertheless, any system, 
al
ulus presented in

this 
hapter on SAT has a worst 
ase exponential running time. So it 
annot run

eÆ
iently on any SAT instan
e. So some ba
kground knowledge about relevant


omplexity results is useful. Here I 
on
entrate on a personal sele
tion of \
las-

si
s", 
omplexity results everybody interested in propositional logi
 reasoning

should know.

The pigeon hole formulas are su
h a 
lassi
, be
ause they were among the

�rst dete
ted formulas that don't have polynomial length resolution proofs. In

addition, they explain why the renaming te
hniques introdu
ed in Se
tion 2.5.3

are not only useful to prevent an explosion in the number of generated 
lauses

out of a formula, but also for the afterwards reasoning pro
ess.

De�nition 2.13.1 (Pigeon Hole Formulas ph(n)). For some given n and propo-

sitional variables P

i;j

, where 1 � j � n, 1 � i � n+1, the 
orresponding pigeon
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hole formula (
lause set) ph(n) is

ph(n) =

^

1�i�n+1

P

i;1

_ : : : _ P

i;n

^

^

1�j�n

^

1 � i; k � n+ 1

i < k

:P

i;j

_ :P

k;j

The intuition behind a variable P

i;j

is that it is true i� pigeon i sits in hole

j. Then the formulas P

i;1

_ : : :_P

i;n

express that every pigeon has to sit in some

hole and the formulas :P

i;j

_ :P

k;j

that a hole 
an host at most one pigeon.

Sin
e there is one more pigeon than holes, the formula is unsatis�able.

Note that the number of 
lauses of a pigeon hole formula ph(n) grows 
ubi


in n. The famous theorem on the pigeon whole formulas says that any resolution

proof showing unsatis�ability of ph(n) has a length at least exponential in n,

i.e., no resolution-based system 
an eÆ
iently show unsatis�ability of a pigeon

hole formula.

Theorem 2.13.2 (Haken [23℄). The length of any resolution refutation of ph(n)

is exponential in n.

Re
all that any refutation of a CDCL pro
edure 
orresponds to a resolution

refutation, where ea
h 
on
i
t generates some new resolvents. Now, a CDCL

pro
edure solves the pigeon hole problem by an enumeration of all possible


ombinations how to put the n + 1 pigeons into the n holes. It guesses some

pigeon in some whole, potentially propagates the 
onsequen
es of the de
ision,

guesses the next one and so on until a 
on
i
t for the parti
ular guess shows that

there is one hole missing for the �nal pigeon. Then it ba
ktra
ks by remembering

that for the parti
ular guess, i.e., 
ombination pigeons, holes, there is no solution.

The CDCL pro
edure never \re
ognizes" the fa
t that the problem is 
ompletely

symmetri
 in pigeons and holes, e.g., on
e it has shown that there is no solution

with pigeon 1 in hole 1 (P

1;1

true) then the problem 
annot be solved at all. It

is not ne
essary anymore to test the holes 2 to n for pigeon 1, be
ause these


ases are symmetri
. This is an informal explanation for the above theorem.

The pigeon hole problem 
an be easily solved by an indu
tive argument. For

ph(n) we put pigeon n+1 in hole n. Then the problem is solvable i� ph(n� 1)

has a solution. Repeating this argument n � 1 times it remains to show that

there is no solution for ph(1), i.e., the 
lause set P

1;1

, P

2;1

, :P

1;1

_ :P

2;1

is

unsatis�able.

This reasoning 
an be perfe
tly simulated by resolution if additional 
lauses

over extra variables are added to ph(n). Let B

k

i;j

be fresh propositional variables

where 2 � k � n, 1 � j < k, 1 � i � k, where we add the 
lauses resulting from

B

n

i;j

$ (P

i;j

_ (P

i;n

^ P

n+1;j

)) for the �rst step

B

k

i;j

$ (B

k+1

i;j

_ (B

k+1

i;k

^ B

k+1

k+1;j

)) for all subsequent steps

to ph(n), where 2 � k � n � 1 and the i; j run in the limits 
orresponding to

B

k

i:j

or B

n

i:j

, respe
tively. Sin
e the B

k

i;j

are fresh and there is only one de�ning

equivalen
e for ea
h B

k

i;j

, the resulting problem is unsatis�able i� the original
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is. Ea
h equivalen
e results in four 
lauses, e.g., the �rst equivalen
e generates

the 
lauses B

n

i;j

_:P

i;j

, B

n

i;j

_:P

i;n

_:P

n+1;j

, :B

n

i;j

_P

i;j

_P

i;n

, :B

n

i;j

_P

i;j

_

P

n+1;j

. Thus there are only polynomially many 
lauses added to ph(n). Now the

additional 
lauses enable to reprodu
e via resolution the indu
tive argument,

where for ea
h \indu
tion step" only polynomially many resolution steps are

needed. Thus the extended pigeon hole problem 
an be refuted by resolution in

polynomially many steps [14℄.

For example, for the 
ase n = 2 the pigeon hole 
lauses are

(1) P

1;1

_ P

1;2

(2) P

2;1

_ P

2;2

(3) P

3;1

_ P

3;2

(4) :P

1;1

_ :P

2;1

(5) :P

1;1

_ :P

3;1

(6) :P

2;1

_ :P

3;1

(7) :P

1;2

_ :P

2;2

(8) :P

1;2

_ :P

3;2

(9) :P

2;2

_ :P

3;2

and the additional equivalen
es de�ning the B

2

i;j

are

B

2

1;1

$ (P

1;1

_ (P

1;2

^ P

3;1

))

B

2

2;1

$ (P

2;1

_ (P

2;2

^ P

3;1

))

Now from :B

2

1;1

_ P

1;1

_ P

3;1

, :B

2

2;1

_ P

2;1

_ P

3;1

with (1), (2), (4), (5), (6), (7)

via resolution the 
lause

(10) :B

2

1;1

_ :B

2

2;1


an be derived. From B

2

1;1

_ :P

1;1

, B

2

1;1

_ :P

1;2

_ :P

3;1

with (1), (3), (8) via

resolution the 
lause

(11) B

2

1;1


an be derived. Analogously, from B

2

2;1

_ :P

2;1

, B

2

2;1

_ :P

2;2

_ :P

3;1

with (2),

(3), (9) via resolution the 
lause

(12) B

2

2;1


an be derived. Now, (10), (11), (12) 
onstitute ph(1), i.e., the above resolution

steps su

essfully perform the redu
tion from ph(2) to ph(1).

C

There are two reasons why I dis
uss the pigeon hole problem in su
h

detail. First, it shows that the invention of new names (propositional

variables) for subformulas, 
an lead to an exponential redu
tion in

proof size. So it 
onstitutes a further justi�
ation for renaming during CNF

transformation (see Se
tion 2.5.3). However, in general, there is no easy answer

when additional names help in proof length redu
tion or in proof sear
h. Se
ond,
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and in my opinion even more important, the pigeon hole problem example ni
ely

shows that \indu
tive reasoning" 
an be done in propositional logi
 and that it


an pay o�. For many real world problems, e.g., hardware veri�
ation, indu
tive

reasoning is key to solve the problems. At the time of this writing, resear
h

in how to automati
ally dete
t and make use of indu
tive properties has just

started for propositional logi
. This holds as well and gets even more diÆ
ult

for more expressive logi
s, su
h as �rst-order logi
.

For the rest of this se
tion I will study some well-known 
lasses for whi
h

SAT 
an be solved in polynomial time, namely, Horn-SAT and 2-SAT. Horn SAT

is the 
lass of 
lauses where ea
h 
lause has at most one positive literal, 2-SAT

the 
lass of 
lauses where ea
h 
lause has at most two literals. For both 
lauses

SAT is de
idable in polynomial time. A
tually, the 2-SAT 
lass 
onstitutes a

sharp border between polynomially solvable and NP-
omplete, be
ause the 3-

SAT 
lass is already NP-
omplete.

De�nition 2.13.3 (Horn-SAT). A propositional 
lause set N belongs to the


lass of Horn-SAT problems if every 
lause 
ontains at most one positive literal.

De�nition 2.13.4 (k-SAT). A propositional 
lause set N belongs to the 
lass

of k-SAT problems if every 
lause 
ontains at most k literals.

Proposition 2.13.5. Any Horn-SAT 
lause set N 
an be de
ided in time linear

in the size of N .

Proof. Superposition with sele
tion is 
omplete for SAT (Theorem 2.11.3). So


onsider a superposition saturation for N where in every 
lause 
ontaining a

negative literal it is sele
ted. Then the saturation pro
ess has two ni
e properties.

First, any superposition inferen
e is an inferen
e between a positive unit 
lause

and a 
lause 
ontaining at least one negative literal. Se
ond, there is always a


lause where all negative literals 
an be resolved away by positive unit 
lauses

or the 
lause set N is satis�able. Combining the two properties results in a

linear-time algorithm for Horn-SAT.

A
tually, the proof of the above proposition implies that the CDCL rules

Propagate and Con
i
t (see Se
tion 2.9) are 
omplete for Horn-SAT. Another


onsequen
e is that unit superposition, a restri
tion to superposition where for

all inferen
es one parent 
lause must be a unit 
lause, is also 
omplete for Horn-

SAT. For unit superposition the result 
an even be reversed. If for some 
lause

setN there is a unit superposition refutation, then the subset of 
lauses involved

in the unit refutation 
an be transformed into a Horn 
lause set by 
ipping signs

of literals.

The 
lause set P _Q, :P _R, :R_Q, :Q is unsatis�able and refutable by

unit superposition. It is not Horn be
ause of the 
lause P _Q. Now by 
ipping

the sign of Q in all 
lauses results in the 
lause set P _ :Q, :P _R, :R _ :Q,

Q whi
h is Horn, equisatis�able, and still unit refutable.

Proposition 2.13.6. Any 2-SAT 
lause set N 
an be de
ided in time polyno-

mial in the size of N .
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Proof. (Idea) Firstly, all unit 
lauses 
an be eliminated by re
ursively resolv-

ing away the respe
tive literals, following the algorithm of Proposition 2.13.5.

For a 
lause set N 
ontaining only 
lauses of length two a dire
ted graph is


onstru
ted. The nodes are the propositional literals from N . For ea
h 
lause

L_K 2 N , the graph 
ontains the two dire
ted edges (L;K) and (K;L). Then

N is unsatis�able i� there is a 
y
le in the graph 
ontaining two nodes L, L.

This 
an be de
ided in time at most quadrati
 in N .

Interestingly, 2-SAT 
onstitutes the border to NP-
ompleteness, be
ause 3-

SAT is already NP-
omplete. This 
an be seen by redu
ing any 
lause set to a

satis�ability equivalent 3-SAT 
lause set via the following transformation. For

any 
lause

L

1

_ : : : _ L

n


onsisting of more than three literals (n > 3) repla
e the 
lause by the 
lauses

L

1

_ : : : _ L

bn=2


_ P

L

bn=2
+1

_ : : : _ L

n

_ :P

where P is a fresh propositional variable. Obviously, L

1

_ : : : _ L

n

is satis�able

i� L

1

_ : : : _ L

bn=2


_ P , L

bn=2
+1

_ : : : _ L

n

_ :P are.

Proposition 2.13.7. 3-SAT is NP-
omplete.

2.14 Appli
ations

For the appli
ation of propositional logi
 on an arbitrary problem it needs to

be en
oded into a propositional formula �. The satis�ability of � 
an then be


he
ked via one of the 
al
uli developed in this 
hapter, e.g. Resolution or DPLL.

In 
ase � is satis�able the 
orresponding 
al
ulus derives a model whi
h has to

be interpreted as a solution to the original problem. The unsatis�ability of �

must be interpreted 
orrespondingly.

2.14.1 Sudoku

As a suitable appli
ation of propositional logi
 serves the Sudoku puzzle. In


hapter 1.1 a spe
i�
 4� 4 Sudoku puzzle was solved using a spe
i�
 
al
ulus.

In this se
tion a general n

2

� n

2

Sudoku puzzle is en
oded into propositional

logi
 and exemplarily the Resolution 
al
ulus from this 
hapter is applied to a

4� 4 Sudoku puzzle.

For the en
oding propositional variables P

d

i;j

are de�ned where P

d

i;j

is true

i� the value of square (i; j) is d. Square boxes are denoted by Q

i;j

where Q

i;j

in-


ludes the squares (i; j); : : : ; (i+n�1; j+n�1). The 
orresponding propositional


lauses are 
onstru
ted as follows:

1. For every initially assigned square (i; j) with value d generate P

d

i;j

2. For every square (i; j) generate P

1

i;j

_ : : : _ P

n

2

i;j
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3. For every square (i; j) and pair of values d < d

0

generate :P

d

i;j

_ :P

d

0

i;j

4. For every value d and 
olumn i generate P

d

i;1

_ : : :_P

d

i;n

2

(analogously for

rows)

5. For every value d and square box Q

i;j

generate P

d

i;j

_ : : : _ P

d

i+n�1;j+n�1

6. For every value d, 
olumn i and pair of rows j < j

0

generate :P

d

i;j

_:P

d

i;j

0

(analogously for rows)

7. For every value d, square box Q

i;j

and pair of squares (k; l) <

lex

(k

0

; l

0

)

where i � k; k

0

< i+ n and j � l; l

0

< j + n generate :P

d

k;l

_ :P

d

k

0

;l

0

The 
orresponding formula � is the 
onjun
tion of ea
h subformula generated

by the steps 1 to 7. This makes a total of m+ n

4

+

1

2

n

6

(n

2

� 1) + 2n

4

+ n

4

+

1

2

n

6

(n

2

� 1) +

1

2

n

6

(n

2

� 1) = m + 4n

4

+

3

2

n

6

(n

2

� 1) 
lauses where m is the

number of initially assigned squares.

After the appli
ation of a propositional logi
 
al
ulus the remaining unit


lauses P

d

i;j

, i.e. the missing numbers to the initial Sudoku puzzle, are derived if

the en
oded formula is satis�able. Otherwise there is no solution to the Sudoku

puzzle.

1 2 3 4

1 1

2 1

3 2

4 4

Figure 2.20: A 4� 4 Sudoku

The appli
ation of this en
oding on the puzzle from Figure 2.20 yields for

example the 
lauses P

1

3;4

_ P

2

3;4

_ P

3

3;4

_ P

4

3;4

, :P

2

2;3

_ :P

2

3;3

, :P

2

2;3

_ :P

2

4;3

and

P

2

2;3

. Applying the rule Resolution from the Resolution 
al
ulus from 
hapter 2.6

results in:

(N ℄ f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g )

RES

(N [ f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g [ f:P

2

3;3

g) and

(N

0

℄fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g))

RES

(N

0

[fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g[

fP

1

3;4

_ P

3

3;4

_ P

4

3;4

g) )

�

RES

(N

00

[ fP

2

3;4

g) see Figure 2.21. After exhaustive

appli
ation of the Resolution 
al
ulus the remaining unit 
onstraints are derived

and the solution is found.

2.14.2 Hardware Veri�
ation

Another example for the appli
ation of propositional logi
 is the veri�
ation of

logi
 hardware 
ir
uits. Sin
e spe
i�
 logi
 hardware 
ir
uits 
an be transformed

into CNF the satis�ability of small logi
 
ir
uits as well as 
ertain properties of

logi
 
ir
uits 
an be 
he
ked with a propositional 
al
ulus from this 
hapter. This
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1 2 3 4

1 1

2 1

3 2

4 2 4

Figure 2.21: A 4� 4 Sudoku after generating the unit 
onstraint P

2

3;4


hapter shows how to en
ode spe
i�
 logi
 
ir
uits into propositional logi
 and

how to apply the en
oding on an exemplary logi
 
ir
uit as shown in Figure 2.22.

This 
hapter 
onsiders logi
 
ir
uits with three di�erent types of gates G

i

:

AND-, OR- and NOT-gates. Ea
h gate has one output, AND- and OR-gates

have two inputs whereas the NOT-gate has only one input. For the en
oding of

the logi
 
ir
uits a propositional variable Q

i

is de�ned for ea
h gate G

i

where

Q

i

is true i� the gate G

i

has output value 1. The propositional 
lauses are


onstru
ted as follows:

1. For every AND-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

^Q

k

)

whi
h is equivalent to (:Q

i

_Q

j

) ^ (:Q

i

_Q

k

) ^ (:Q

j

_ :Q

k

_Q

i

)

2. For every OR-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

_ Q

k

)

whi
h is equivalent to (:Q

i

_Q

j

_Q

k

) ^ (:Q

j

_Q

i

) ^ (:Q

k

_Q

i

)

3. For every NOT-gate G

i

with input Q

j

we have Q

i

$ :Q

j

whi
h is equiv-

alent to (:Q

i

_ :Q

j

) ^ (Q

j

_Q

i

).

The 
orresponding formula � is the 
onjun
tion of all 
lauses generated by

the steps 1 to 3. After generating this en
oding a propositional 
al
ulus from


hapter 2 
an be applied in order to 
he
k 
ertain properties of logi
 
ir
uits

(note that the 
al
uli presented in 
hapter 2 are ineÆ
ient on larger logi
 
ir
uit


onstru
tions). Some of the properties that 
an be 
he
ked are for example the

satis�ability of logi
 
ir
uits given a partial truth assignment � (whi
h assigns

boolean values to outputs), the satis�ability of logi
 
ir
uits in 
ase of a re
ursive


onstru
tion, the equivalen
e of two logi
 
ir
uits or to 
he
k if 
ertain properties

for example Q

0

! Q

5

for the logi
 
ir
uit in Figure 2.22 hold.

As an example the satis�ability of the logi
 
ir
uit in Figure 2.22 under a

given partial truth assignment �(Q

0

) = 1 and �(Q

5

) = 1 
an be 
he
ked using

the DPLL 
al
ulus:

The appli
ation of the en
oding to the logi
 
ir
uit of Figure 2.22 to-

gether with the partial truth assignment � yields a total of 12 
lauses:

N = fQ

0

; Q

5

;:Q

4

_ Q

2

_ Q

1

;:Q

2

_ Q

4

;:Q

1

_ Q

4

;:Q

2

_ :Q

0

; Q

2

_

Q

0

;:Q

3

_ :Q

1

; Q

3

_ Q

1

;:Q

5

_ Q

4

;:Q

5

_ Q

3

;:Q

4

_ :Q

3

_ Q

5

g. Apply-

ing the DPLL 
al
ulus we a
hieve: (�;N) )

Propagate

DPLL

(Q

0

;N) )

Propagate

DPLL

(Q

0

Q

5

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

;N))

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

;N). LetM = (Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

)
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Q

0

G

2

G

4

G

5

Q

1

G

3

Figure 2.22: A logi
 
ir
uit with two NOT-gates (G

2

and G

3

), an OR-gate G

4

and an AND-gate G

5

then the logi
 
ir
uit is unsatis�able under the given truth assignment sin
e

M j= :N and there is no de
ision literal in M .

If the logi
 
ir
uit of Figure 2.22 is 
onsidered without a partial truth as-

signment then the 
onstru
tion is satis�able for example with M = (:Q

0

:Q

1

).

If the gate G

4

of Figure 2.22 is repla
ed by an AND-gate instead of an OR-

gate then the 
onstru
tion will always be unsatis�able independent of any truth

assignment.

Histori
 and Bibliographi
 Remarks

Although already Greek philosophers like Aristotle (384 BC { 322 BC) were

interested in \truth of propositions" the syntax and semanti
s of propositional

logi
 goes ba
k to the modern logi
ians, mathemati
ians and philosophers Au-

gustus de Morgan (1806 { 1871), George Boole (1815 { 1864), Charles Sanders

Peir
e (1839 { 1914), and Gottlob Frege (1848 { 1925). In parti
ular, today

Boole's 
al
ulus [10℄ is known as \propositional logi
". For a ni
e histori
 per-

spe
tive see Martin Davis's book [16℄.
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Chapter 3

First-Order Logi


3.1 Syntax

De�nition 3.1.1 (Many-Sorted Signature). A many-sorted signature � =

(S;
;�) is a pair 
onsisting of a �nite non-empty set S of sort symbols, a

non-empty set 
 of operator symbols (also 
alled fun
tion symbols) over S and

a set � of predi
ate symbols. Every operator symbol f 2 
 has a unique sort

de
laration f : S

1

� : : :�S

n

! S, indi
ating the sorts of arguments (also 
alled

domain sorts) and the range sort of f , respe
tively, for some S

1

; : : : ; S

n

; S 2 S

where n � 0 is 
alled the arity of f , also denoted with arity(f). An operator

symbol f 2 
 with arity 0 is 
alled a 
onstant. Every predi
ate symbol P 2 �

has a unique sort de
laration P � S

1

� : : : � S

n

. A predi
ate symbol P 2 �

with arity 0 is 
alled a propositional variable. For every sort S 2 S there must

be at least one 
onstant a 2 
 with range sort S.

In addition to the signature �, a variable set X , disjoint from 
 is assumed, so

that for every sort S 2 S there exists a 
ountably in�nite subset of X 
onsisting

of variables of the sort S. A variable x of sort S is denoted by x

S

.

De�nition 3.1.2 (Term). Given a signature � = (S;
;�), a sort S 2 S and

a variable set X , the set T

S

(�;X ) of all terms of sort S is re
ursively de�ned

by (i) x

S

2 T

S

(�;X ) if x

S

2 X , (ii) f(t

1

; : : : ; t

n

) 2 T

S

(�;X ) if f 2 
 and

f : S

1

� : : :� S

n

! S and t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng.

The sort of a term t is denoted by sort(t), i.e., if t 2 T

S

(�;X ) then sort(t) =

S. A term not 
ontaining a variable is 
alled ground.

For the sake of simpli
ity it is often written: T (�;X ) for

S

S2S

T

S

(�;X ), the

set of all terms, T

S

(�) for the set of all ground terms of sort S 2 S, and T (�)

for

S

S2S

T

S

(�), the set of all ground terms over �.

De�nition 3.1.3 (Equation, Atom, Literal). If s; t 2 T

S

(�;X ) then s � t is an

equation over the signature �. Any equation is an atom (also 
alled atomi
 for-

mula) as well as every P (t

1

; : : : ; t

n

) where t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng

93
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and P 2 �, arity(P ) = n, P � S

1

� : : : � S

n

. An atom or its negation of an

atom is 
alled a literal.

The literal s

.

� t denotes either s � t or t � s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal :(s � t) is written

as s 6� t.

C

Non equational atoms 
an be transformed into equations: For this a

given signature is extended for every predi
ate symbol P as follows:

(i) add a distin
t sort B to S, (ii) introdu
e a fresh 
onstant true of

the sort B to 
, (iii) for every predi
ate P , P � S

1

� : : : � S

n

add a fresh

fun
tion f

P

: S

1

; : : : ; S

n

! B to 
, and (iv) en
ode every atom P (t

1

; : : : ; t

n

) as

a fun
tion f

P

: S

1

; : : : ; S

n

! B. Thus, predi
ate atoms are turned into equations

f

P

(t

1

; : : : ; t

n

) � true. are overloaded here.

De�nition 3.1.4 (Formulas). The set FOL(�;X ) of many-sorted �rst-order

formulas with equality over the signature � is de�ned as follows for formulas

�;  2 F

�

(X ) and a variable x 2 X :

FOL(�;X ) Comment

? falsum

> verum

P (t

1

; : : : ; t

n

); s � t atom

(:�) negation

(� ^  ) 
onjun
tion

(� _  ) disjun
tion

(�!  ) impli
ation

(�$  ) equivalen
e

8x:� universal quanti�
ation

9x:� existential quanti�
ation

A 
onsequen
e of the above de�nition is that PROP(�) � FOL(�

0

;X ) if

the propositional variables of � are 
ontained in �

0

as predi
ates of arity 0. A

formula not 
ontaining a quanti�er is 
alled quanti�er-free.

De�nition 3.1.5 (Positions). It follows from the de�nitions of terms and for-

mulas that they have tree-like stru
ture. For referring to a 
ertain subtree,


alled subterm or subformula, respe
tively, sequen
es of natural numbers are

used, 
alled positions (as introdu
ed in Chapter 2.1.3). The set of positions of

a term, formula is indu
tively de�ned by:

pos(x) := f�g if x 2 X

pos(�) := f�g if � 2 f>;?g

pos(:�) := f�g [ f1p j p 2 pos(�)g

pos(� Æ  ) := f�g [ f1p j p 2 pos(�)g [ f2p j p 2 pos( )g

pos(s � t) := f�g [ f1p j p 2 pos(s)g [ f2p j p 2 pos(t)g

pos(f(t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(P (t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(8x:�) := f�g [ f1p j p 2 pos(�)g

pos(9x:�) := f�g [ f1p j p 2 pos(�)g
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where Æ 2 f^;_;!;$g and t

i

2 T (�;X ) for all i 2 f1; : : : ; ng.

The pre�x orders (above, stri
tly above and parallel), the sele
tion and re-

pla
ement with respe
t to positions are de�ned exa
tly as in Chapter 2.1.3.

An term t (formula �) is said to 
ontain another term s (formula  ) if t

p

= s

(�

p

=  ). It is 
alled a stri
t subexpression if p 6= �. The term t (formula �)

is 
alled an immediate subexpression of s (formula  ) if jpj = 1. For terms a

subexpression is 
alled a subterm and for formulas a subformula, respe
tively.

The size of a term t (formula �), written jtj (j�j), is the 
ardinality of pos(t),

i.e., jtj := j pos(t)j (j�j := j pos(�)j). The depth of a term, formula is the maximal

length of a position in the term, formula: depth(t) := maxfjpj j p 2 pos(t)g

(depth(�) := maxfjpj j p 2 pos(�)g). The set of all variables o

urring in a

term t (formula �) is denoted by vars(t) (vars(phi)) and formally de�ned as

vars(t) := fx 2 X j x = tj

p

; p 2 pos(t)g (vars(�) := fx 2 X j x = �j

p

; p 2

pos(�)g). A term t (formula �) is ground if vars(t) = ; (vars(�) = ;).

Note that vars(8x:a � b) = ; where a; b are 
onstants. This is justi�ed by the

fa
t that the formula does not depend on the quanti�er, see semanti
s below.

In 8x:� (9x:�) the formula � is 
alled the s
ope of the quanti�er. An o
-


urren
e q of a variable x in a formula � (�j

q

= x) is 
alled bound if there is

some p < q with �j

p

= 8x:�

0

or �j

p

= 9x:�

0

. Any other o

urren
e of a vari-

able is 
alled free. A formula not 
ontaining a free o

urren
e of a variable is


alled 
losed. If fx

1

; : : : ; x

n

g are the variables freely o

urring in a formula

� then 8x

1

; : : : ; x

n

:� and 9x

1

; : : : ; x

n

:� (abbreviations for 8x

1

:8x

2

: : :8x

n

:�,

9x

1

:8x

2

: : :8x

n

:�, respe
tively) are the universal and the existential 
losure of

�.

Example 3.1.6. For the literal :P (f(x; g(a))) the atom P (f(x; g(a))) is an

immediate subformula of o

urring at position 1. The terms x and g(a) are

stri
t subterms o

urring at positions 111 and 112, respe
tively. The for-

mula :P (f(x; g(a)))[b℄

111

= :P (f(b; g(a))) is obtained by repla
ing x with b.

pos(:P (f(x; g(a)))) = f�; 1; 11; 111; 112; 1121gmeaning its size is 6, its depth 4

and vars(:P (f(x; g(a)))) = fxg.

The polarity of a subformula  = �j

p

at position p is pol(�; p) where pol is

re
ursively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

pol(P (t

1

; : : : ; t

n

); p) := 1

pol(t � s; p) := 1

pol(8x:�; 1p) := pol(�; p)

pol(9x:�; 1p) := pol(�; p)


