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problem state (M ;N ;U ; j;C) if k is the maximal level of a literal in D. Reall

C is a non-empty lause or > or ?. The rules are

Propagate (M ;N ;U ; k;>) )

CDCL

(ML

C_L

;N ;U ; k;>)

provided C _ L 2 (N [ U), M j= :C, and L is unde�ned in M

Deide

(M ;N ;U ; k;>) )

CDCL

(ML

k+1

;N ;U ; k + 1;>)

provided L is unde�ned in M

Conit

(M ;N ;U ; k;>) )

CDCL

(M ;N ;U ; k;D)

provided D 2 (N [ U) and M j= :D

Skip (ML

C_L

;N ;U ; k;D) )

CDCL

(M ;N ;U ; k;D)

provided D 62 f>;?g and :L does not our in D

Resolve

(ML

C_L

;N ;U ; k;D _ :L) )

CDCL

(M ;N ;U ; k;D _ C)

provided D ontains a literal of level k or k = 0

For rule Resolve we assume that dupliate literals in D _ C are always re-

moved.

Baktrak

(M

1

K

i+1

M

2

;N ;U ; k;D _ L) )

CDCL

(M

1

L

D_L

;N ;U [ fD _

Lg; i;>)

provided L is of maximal level k in D _ L and D is of level i, where i < k.

Restart

(M ;N ;U ; k;>) )

CDCL

(�;N ;U ; 0;>)

provided M 6j= N

Forget (M ;N ;U [ fCg; k;>) )

CDCL

(M ;N ;U ; k;>)

provided M 6j= N

Here ? denotes the empty lause, hene fail. The level of the empty lause

? is 0. The lause D_L added in rule Baktrak to U is alled a learned lause.

The CDCL algorithm stops with a modelM if neither Propagate nor Deide nor

Conit are appliable to a state (M ;N ;U ; k;>), hene M j= N and all literals

of N are de�ned inM . The only possibility to generate a state (M ;N ;U ; k;?) is

by the rule Resolve. So in ase of deteting unsatis�ability the CDCL algorithm

atually generates a resolution proof as a erti�ate. I will disuss this aspet

in more detail in Setion 2.11. In the speial ase of a unit lause L, the rule

Propagate atually annotates the literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of

reasons. For example, starting with (�;N ; ;; 0;>) a simple ombination Propa-

gate, Deide and eventually Restart yields the start state again. Even after a

suessful appliation of Baktrak, exhaustive appliation of Forget followed

by Restart again produes the start state. So why these rules? Atually, any

modern SAT solver is based on this rule set and the underlying mehanisms. I

will motivate the rules later on and how they are atually used in an eÆient

way.
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Example 2.9.1 (CDCL Strategy I). Consider the lause set N = fP _Q;:P _

Q;:Qg whih is unsatis�able. The below is a CDCL derivation proving this

fat. The hosen strategy for CDCL rule seletion produes a lengthy proof.

(�;N ; ;; 0;>)

)

Deide

CDCL

(P

1

;N ; ;; 1;>)

)

Deide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Conit

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Baktrak

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;>)

)

Conit

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;:Q)

)

Baktrak

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;>)

)

Deide

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;>)

)

Conit

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;:P _Q)

)

Baktrak

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;>)

)

Conit

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;Q)

)

Resolve

CDCL

(�;N ; f:P _Q;:Qg; 0;?)

Example 2.9.2 (CDCL Strategy II). Consider again the lause set N = fP _

Q;:P _ Q;:Qg from Example 2.9.1. For the following CDCL derivation the

rules Propagate and Conit are preferred over the other rules.

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Conit

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;:P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; ;; 0;Q)

)

Resolve

CDCL

(�;N ; ;; 0;?)

I

In an implementation the rule Conit is preferred over the rule Prop-

agate and both over all other rules. Exatly this strategy has been

used in Example 2.9.2 and is alled reasonable below. A further in-

gredient is a dynami heuristi whih literal is atually used by the rule Deide.

This heuristi typially depends on the usage of literals by the rule Resolve, i.e.,

literals used in Resolve \get a bonus".

De�nition 2.9.3 (Reasonable CDCL Strategy). A CDCL strategy is reasonable

if Conit is always preferred over rule Propagate is always preferred over all

other rules.

Proposition 2.9.4 (CDCL Basi Properties). Consider a CDCL state

(M ;N ;U ; k;C) derived by a reasonable strategy from start state (�;N; ;; 0;>)

without using the rules Restart and Forget. Then the following properties hold:

1. M is onsistent.

2. All learned lauses are entailed by N .
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3. If C 62 f>;?g then M j= :C.

4. If C = > and M ontains only propagated literals then for eah valuation

A with A j= N it holds that A j=M .

5. If C = >, M ontains only propagated literals and M j= :D for some

D 2 (N [ U) then N is unsatis�able.

6. If C = ? then CDCL terminates and N is unsatis�able.

7. Eah in�nite derivation

(�;N ; ;; 0;>))

CDCL

(M

1

;N ;U

1

; k

1

;D

1

))

CDCL

: : :

ontains an in�nite number of Baktrak appliations.

8. CDCL never learns the same lause twie if Conit selets the smalles

lause out of N [ U .

Proof. 1.M is onsistent if it does does not ontain L and :L at the same time.

The rules Propagate, Deide only add unde�ned literals to M . By an indutive

argument this holds also for Baktrak as it just removes literals from M and

ips one literal already ontained in M .

2. A learned lause is a always a resolvent of lauses from N [ U and even-

tually added to U where U is initially empty. By soundness of resolution (The-

orem 2.6.1) and an indutive argument it is enatailed by N .

3. A lause C 62 f>;?g an only our after Conit where M j= :C.

The rule Skip does not hange C and only deletes propagated literals from M

that are not ontained in C. By an indutive argument, if the rule Resolve is

applied to a state (M

0

L

D

0

_L

;N ;U ; k;D _ :L) where C = D _ :L resulting in

(M

0

;N ;U ; k;D_D

0

) thenM

0

j= :D beauseM

0

j= :C andM

0

j= :D

0

beause

L was propagated with respet to M

0

and D

0

_ L.

4. Proof by indution on the number n of propagated literals in M . Let

M = L

1

; : : : ; L

n

; L

n+1

. There are two rules that ould have added L

n+1

. (i) rule

Propagate: in this ase there is a lause C = D _ L

n+1

where L

n+1

was unde-

�ned in M and M j= :D. By indution hypothesis for eah valuation A with

A j= N it holds that A(L

i

) = 1 for all i 2 f1; : : : ; ng. Sine all literals in D

appear negated in M with the indution hypothesis it holds that all those liter-

als must have the truth value 1 in any valuation A. Therefore, for the lause C

to be true L

n+1

must be true as well in any valuation. It follows that for eah

valuation A it holds that A(L

i

) = 1 for all i 2 f1; : : : ; n + 1g. (ii) rule Bak-

trak: the state (M

1

K

i+1

M

2

;N ;U ; k;D_L

k

n+1

) whereM j= :(D_L

k

n+1

) (with

Proposition 2.9.4-3) and M

1

= L

1

: : : L

n

with only propagated literals beomes

(M

1

L

D_L

n+1

n+1

;N ;U ; i;>). With the indution hypothesis for eah valuation A

with A j= N it holds that A(L

i

) = 1 for all 1 � i � n i.e. in partiular it holds

that for eah literal L in D A(L) = 0 sine eah literal in D appears negated in

M

1

. Thus, for eah eah valuation A with A j= N A(L

n+1

) = 1 holds.
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5. Sine M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.9.4-4 for eah valuation A with A j= N it holds that A(L

j

) = 1 for

all 1 � j � n. Thus in partiular it holds that A(:K

i

) = 1 for all 1 � i � m.

ThereforeD is always false under any valuation A and N is always unsatis�able.

6. By the de�nition of the rules the state (M ;N ;U ; k;?) an only be reahed

if the rule Conit has been applied to set some onit lause C of a state

(M

0

;N ;U ; k;>) as the last omponent and Resolve is used in the last rule

appliation to derive?. Before the last all of Resolve the state had the following

form (ML

?_L

;N ;U ; k;:L) otherwise? ould not be derived.M annot ontain

any deision literal beause L is a propagated literal and due to the strategy

the rule Propagate is applied before the rule Deide. With Proposition 2.9.4-5

it follows that N is unsatis�able.

7. Proof by ontradition. Assume Baktrak is applied only �nitely often

in the in�nite trae. Then there exists an i 2 N

+

with R

j

6= Baktrak for all

j > i. Propagate and Deide an only be applied as long as there are unde�ned

literals in M . Sine there is only a �nite number of propositional variables they

an only be applied �nitely often.

By de�nition the appliation of the rules Skip, Resolve and Baktrak is

preeded by an appliation of the rule Conit sine the initial state has a

> as the last omponent and Conit is the only rule that replaes the last

omponent by a lause. For the rule Conit to be applied in�nitely often the

last omponent has to hange to >. By de�nition that an only be performed

by the rules Resolve and Baktrak (a ontradition to the assumption). For

Resolve assume the following rule appliation (ML

C_L

;N ;U ; k;D_:L))

CDCL

(M ;N ;U ; k;D _ C). For D _ C = > there must be a literal K with K;:K 2

(D _ C). With Proposition 2.9.4-3 M j= :(D _ C) holds whih is equivalent

to M j= ?,a ontradition beause of Proposition 2.9.4-1. Therefore Conit is

applied �nitely often.

Skip and Resolve are also applied �nitely often sine Conit is applied

�nitely often and they annot be applied in�nitely often interhangeably. Oth-

erwise the �rst omponent M has to be of in�nite length, a ontradition.

8. By Proposition 2.11.4.

Lemma 2.9.5. Assume the algorithm CDCL with all rules is applied using

the strategy eager appliation of Conit and Propagate where Conit is ap-

plied before Propagate. The CDCL algorithm has only 2 termination states:

(M ;N ;U ; k;>) where M j= N and (M ;N ;U ; k;?) where N is unsatis�able.

Proof. Let the CDCL algorithm terminate in a state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>).

1. Let � = ?. No rule an be applied and (M ;N ;U ; k;?) is indeed a termi-

nation state. With Proposition 2.9.4-6 it also holds that N is unsatis�able.

2. Let � = > and M j= N . Then the algorithm found a total valuation M

for N and no literal in N is unde�ned in M (otherwise we ould apply
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Deide, ontraditing that the algorithm terminated). SineM j= N there

an also be no onit lause D. Hene, no further rule an be applied and

the state (M ;N ;U ; k;>) where M j= N is a termination state.

3. Let � = > andM j= N does not hold. SineM j= N does not hold there is

either a lauseD 2 N withM j= :D or there is no suh lauseD but there

is a literal in N that is unde�ned in M . For the �rst ase the rule Conit

is appliable and for the seond ase the rule Deide is appliable. Thus,

for both ases it holds that (M ;N ;U ; k;>) is not a termination state, a

ontradition.

4. Let � be a lause C = D _L. With Proposition 2.9.4-3 the lause C must

be a oniting lause where M j= :C.

If the rightmost literal in M is a propagated literal then the rules Skip or

Resolve are appliable if their onditions are satis�ed. This would ontra-

dit that the algorithm terminated. The ase that the onditions are not

satis�ed is handled in a similar way as the deided literal ase.

If the rightmost literal is a deision literal L then L is ontained in C. This

is due to the fat that with the assumed strategy before deiding literal L

(via the rule Deide) neither Propagate nor Conit were appliable. Thus,

L is of maximal level k and the remaining part of C an only be of a level

i with i < k. The same holds for the ase that the rightmost literal is a

propagated literal butD does not ontain a literal of level k and Skip is also

not appliable. ThenD must again be of a level i with i < k and Lmust be

the literal of level k in C (otherwise, due to the strategy, the rule Conit

would have been alled before the rule Propagate and the rightmost literal

in M ould not be the propagated literal L). Therefore, in both ases the

rule Baktrak is appliable, ontraditing that the algorithm terminated.

Proposition 2.9.6 (CDCL Soundness). Assume the algorithm CDCL with all

rules is applied using the strategy eager appliation of Conit and Propagate

where Conit is applied before Propagate. The rules of the CDCL algorithm are

sound, i.e. whenever the algorithm terminates in state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>) then it holds thatM j= N i� N is satis�able.

Proof. ()) if M j= N and M is onsistent with Proposition 2.9.4-1 then N is

satis�able.

(() Proof by ontradition. Assume N is satis�able and the algorithm ter-

minates in state (M ;N ;U ; k;�) starting from the initial state (�;N ; ;; 0;>).

Furthermore, assume M j= N does not hold. With Lemma 2.9.5 there are only

2 termination states, i.e. � an only be > or ?.

Case � = > then by Lemma 2.9.5 M j= N . This is a ontradition to the

assumption that M j= N does not hold.

Case � = ? then by Lemma 2.9.5 N is unsatis�able. This is a ontradition

to N being satis�able.
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Therefore all rules of the CDCL algorithm are sound.

Proposition 2.9.7 (CDCL Completeness). The CDCL rule set is omplete: for

any valuationM withM j= N there is a sequene of rule appliation generating

(M ;N ;U ; k;>) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sine M is a valuation there are no dupliates

in M and k appliations of rule Deide yield (L

1

1

L

2

2

: : : L

k

k

;N ; ;; k;>) out of

(�;N ; ;; 0;>). Sine M j= N this is a �nal state and all literals from N are

de�ned in M . The rules Propagate and Deide annot be applied anymore and

there is no onit beause M j= N . Therefore Conit, Skip, Resolve and

Baktrak are not appliable. The rule Forget is not appliable sine U = ; and

there is no need to restart.

C

As an alternative proof of Proposition 2.9.7 the strategy of an alter-

nation of an exhaustive appliation of Propagate and one appliation

of Deide produes (M ;N ; ;; i;>) as a �nal state where M j= N .

As in the proof of Proposition 2.9.7 let M = L

1

L

2

: : : L

k

. First apply Prop-

agate m-times exhaustively resulting in (L

1

: : : L

m

;N ; ;; 0;>) where m � k.

With Proposition 2.9.4-4 the literals L

1

: : : L

m

must be true in any valuation

A with A j= N . Thus, if m = k then (L

1

: : : L

m

;N ; ;; 0;>) is a �nal state

and M j= N . If m < k then apply Deide one on a literal from M resulting

in (L

1

: : : L

m

L

1

;N ; ;; 1;>). Sine L

1

is ontained in M it must be true. This

strategy an be applied equivalently to all further literals in M resulting in the

desired state.

Proposition 2.9.8 (CDCL Termination). Assume the algorithm CDCL with

all rules exept Restart and Forget is applied using the strategy eager appliation

of Conit and Propagate where Conit is applied before Propagate. Then it

terminates in a state (M ;N ;U ; k;D) with D 2 f>;?g.

Proof. Proof by ontradition. Assume there is an in�nite trae that starts in a

state (M

0

;N ;U

0

; k

0

;D

0

). With Proposition 2.9.4-?? and 2.9.4-8 there an only be

a �nite number of lauses that are learned during the in�nite run. By de�nition

of the rules only the rule Baktrak auses that a lause is learned so that the

rule Baktrak an only be applied �nitely often. But with Proposition 2.9.4-7

the rule Baktrak must be applied in�nitely often, a ontradition. Therefore

there does not exist an in�nite trae, i.e. the algorithm always terminates under

the given assumptions.

The CDCL rule set does not in general terminate. This is due to the rules

Restart and Forget. If they are applied only �nitely often then the algorithm

terminates. At some point the last appliation of Restart and Forget was reahed

sine they are only applied �nitely often. From this point onwards Proposition

2.9.8 an be applied and the algorithm eventually terminates.
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Example 2.9.9 (CDCL Termination I). Consider the lause set N = fP _

Q;:P _ Q;:Qg. The CDCL algorithm does not terminate due to the rule

Restart.

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

CDCL

: : :

Example 2.9.10 (CDCL Termination II). Consider the lause set N = f:P _

Q_:R;:P _Q_Rg. The CDCL algorithm does not terminate due to the rule

Forget.

(�;N ; ;; 0;>)

)

Deide

CDCL

(P

1

;N ; ;; 1;>)

)

Deide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Conit

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _ R)

)

Resolve

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Baktrak

CDCL

(P

1

;N ; f:P _Qg; 1;>)

)

Forget

CDCL

(P

1

;N ; ;; 1;>)

)

Deide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Conit

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _ R)

)

CDCL

: : :

C

As an alternative for the proof of Proposition 2.9.8 the termination

an be shown by assigning a well-founded measure � and proving that

it dereases with eah rule appliation exept for the rules Restart and

Forget. Let n be the number of propositional variables in N . The domain for

the measure � is N � f0; 1g� N.

�((M ;N ;U ; k;D)) =

�

(3

n

� 1� jU j; 1; n� jM j) ; D = >

(3

n

� 1� jU j; 0; jM j) ; else

The well-founded ordering is the lexiographi extension of < to triples.

What remains to be shown is that eah rule appliation exept Restart and

Forget dereases �. This is done via a ase analysis over the rules:
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Propagate:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

C_L

j)

= �((ML

C_L

;N ;U ; k;>))

Deide:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

k+1

j)

= �((ML

k+1

;N ;U ; k;>))

Conit:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))

Skip:

�((ML

C_L

;N ;U ; k;D)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))

Resolve:

�((ML

C_L

;N ;U ; k;D _ :L)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D _ C))

Baktrak: with Proposition 2.9.4-8 it holds that D_L 62 U so that the �rst

omponent dereases.

�((M

1

K

i+1

M

2

;N ;U ; k;D _ L)) = (3

n

� 1� jU j; 0; jM

1

K

i+1

M

2

j)

> (3

n

� 1� jU [ fD _ Lgj; 1; n� jM

1

L

D_L

j

= �((M

1

L

D_L

;N ;U [ fD _ Lg; i;>))

2.10 Implementing CDCL

For an e�etive CDCL implementation the underlying data struture of the im-

plementation plays a ruial part. The tehnique that proved to be very suess-

ful in modern SAT solvers and that is also used in a CDCL implementation is the

2-wathed literals data struture. For hoosing the deision variables a speial

heuristi plays an important role in the implementation as well. This heuris-

ti is alled VSIDS (Variable State Independent Deaying Sum) that works on

natural numbers. Furthermore, the deision for hoosing the most reasonable

lause to be learned after a disovered onit is handled by the notion of UIPs

(Unique Impliation Points). In the following these main onepts (2-wathed

literals, VSIDS and 1UIP sheme) will be introdued in aordane with the

CDCL rule set.
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.

.

.

P

.

.

.

P R

. . .

Q

:P

. . .

lause

lauses with P

lauses with :P

lause

Figure 2.10: The wathed literals list with the variables P;Q;R and the wathed

literals P , R and :P , Q.

2.10.1 Lazy Data Struture: 2-Wathed Literals (2WL)

For applying the rule Propagate, the number of literals in eah lause that are

not false need to be known. Maintaining this number is expensive, however,

sine it has to be updated whenever Baktrak is applied. Therefore, the better

approah is to use a more eÆient representation alled 2-wathed literals. A

list as represented in Figure 2.10 has referenes for eah variable P to lauses

where P ours positive and referenes to lauses where P ours negative. A

variable is either unassigned, true or false. For eah lause within the lause list

2 wathed (unassigned) variables are maintained. The way of working with the

wathed literals is as follows:

1. Let an unassigned variable P be set to false (or true).

2. Visit all lauses in whih P (or :P ) is wathed.

3. In every lause where P (or :P ) is wathed �nd an unwathed and non-

falsi�ed variable to be wathed. If there is no other unassigned or true

variable then this lause is either a unit lause and the rule Propagate an

be applied or there is a onit and the rule Baktrak is applied or the

lause set is already satis�ed.

An advantage of the data struture as shown in the example below is no

extra ost for variables that are not wathed (but assigned false).

As an example onsider the formula � = f:P _Q_ :R _ :S _ T;:P _Q_

:T;R_T; S_Tg. Figure 2.13 shows how to derive unit lauses and �nally satisfy

the formula within the wathed literals data struture. The wathed literals are

the �rst two entries in a lause. The trail (see next setion on Baktraking)

represents the assigned literals for the urrent state.
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.

.

.

P

.

.

.

NULL

:P

Q

:T

:P

Q

:R :S T

(a) Initialized 2WL data struture for the literal P and the urrent

trail is empty.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(b) After deiding P the wathed literals have hanged and the ur-

rent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

() After deiding :Q the unit lause f:P _Q_:Tg is ahieved and

the urrent trail is: P;:Q.
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.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(d) After propagating :T; R and S the urrent trail is:

P;:Q;:T; R;S and the lause f:P _Q_:R_:S _ Tg evaluates to

false, a onit.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(e) After baktraking S;R; T; Q the urrent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

(f) After propagating Q and deiding S the trail is: P;Q; S.
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.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(g) After deiding :T and propagating R the trail is: P;Q;S;:T;R.

Figure 2.13: The wathed literals list for the formula � = f:P _Q_:R_:S _

T;:P _Q_:T;R_T; S _Tg before and after deiding / propagating variables

with a fous on the literal P .

2.10.2 Baktraking

Another main advantage of the 2-wathed literals data struture is disovered

when onsidering baktraking. For this purpose a trail, a deision level and a

ontrol stak are maintained together with the wathed literals data struture.

The trail is a stak of variables that stores the order in whih the variables

are assigned. The deision level ounts the number of alls of the rule Deide.

The ontrol stak stores the trail height for eah deision level, i.e. one Deide

is applied the ontrol stak inreases by one entry and saves the height of the

previous trail stak.

If the rule Baktrak is applied the trail height entry from the ontrol stak is

taken and every variable from that trail height on will be unassigned, i.e. every

assignment value that was made sine the last appliation of the rule Deide is

deleted. A detailed example is shown in Figure 2.14. Again, the advantage with

the wathed literals data struture is that the wathed variables stay unhanged

and will not be onsidered by this baktraking step.

2.10.3 Dynami Deision Heuristi: VSIDS

Choosing the right unassigned variable to deide is important for eÆieny, but

the heuristi may be expensive itself. Therefore, the aim is to use a heuristi

that needs not to be reomputed too often, that for example hooses variables

whih our frequently and prefers variables from reent onits.

The VSIDS (Variable State Independent Deaying Sum) is suh a heuristi.

The strategy is as follows:

1. Initially assign eah variable a sore e.g. its number of ourrenes in the

formula.
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0

deision

level

0

ontrol

stak

trail

(a) The initial entries.

1

deision

level

0

ontrol

stak

trail

0

P

(b) After deiding P.

2

deision

level

0

ontrol

stak

trail

0

1

P

:Q

() After deiding :Q.

2

deision

level

0

ontrol

stak

trail

0

1

P

:Q

:T

S

:R

(d) After propagating :T, S and :R.

1

deision

level

0

ontrol

stak

trail

0

P

(e) After baktraking.

Figure 2.14: The entries for deision level, ontrol stak and trail for the formula

� = fS _Q;P _Q;:P _ R _ :S;:P _ :R _ T;:P _Q _ :Tg.

2. Adjust the sores during a CDCL run: whenever a onit lause is re-

solved with another lause the resolved variable gets its sore inreased by

a bonus d, initially d = 1 and d inreases with every onit: d = d

6

5

de.

3. Furthermore, whenever a lause is learned the sore of the variables of this

lause is additionally inreased by adding d to its sore.

4. As soon as a variable sore s or d reahes a ertain limit k, e.g. k = 2

60

,

all variables get their sore resaled by a onstant, e.g. s = ds � 2

60

e. At

this point d is also resaled: d = dd � 2

�50

e.

5. At a deision point with probability

1

50

hoose a variable at random. In

the other ases hoose an unassigned variable with the highest sore.

The heuristi has very low overhead sine it is independent of variable as-

signments whih makes it a fast strategy. Furthermore, it favors variables that

satisfy the most possible number of lauses and prefers variables that are more

involved in onits.

2.10.4 Conit Analysis and Learning: 1UIP sheme

If a oniting lause is found, the algorithm needs to derive a new lause from

the onit and add it to the urrent set of lauses. But the problem is that this

may produe a large number of new lauses, therefore it beomes neessary to

hoose a lause that is most reasonable.
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This setion examines how to derive suh a onit lause one a onit

is deteted. The key idea is to �nd an asserting lause that inludes the �rst

UIP (Unique Impliation Point). For this purpose the onept of impliation

graphs is required and hene de�ned �rst. An impliation graph G = (V;E) is

a direted graph with a node set V and an edge set E. Eah node has the form

l=L, whih means that the variable L was set to a value (either true or false)

at the deision level l either via the rule Propagate or Deide. If a variable L

of a node n was set via the rule Propagate with lause C = D _ L then there

must be an edge from every node of the variables in D to n. This means that

the variables from D imply L. In partiular, deision variable nodes have no

inoming edges. A ut of an impliation graph is a partition of the graph into

two nonempty sets suh that the deision variable nodes will be in a di�erent

set than the onit node. Every edge that rosses a spei� ut will be part

of a onit set, i.e. the number of uts denotes the number of onit sets.

There is a total of 2

n�k

possible uts, where n = # variables and k = level of

onit lause (= # deision variables). A UIP in the graph is a variable of the

onit level l that lies on every path from the deision variable of level l and

the onit. The �rst UIP (1UIP) is a UIP that lies losest to the onit in

the impliation graph. The strategy for deriving the most useful onit lause

is as follows:

1. Construt the impliation graph aording to a given set of lauses, a for-

mula �. As an example onsider Figure 2.15 that depits an impliation

graph of the formula � = fS_Q;P _Q;:P _R_:S;:P _:R_T;:P _Q_

:Tg where the node 1=; denotes a onit. The orresponding trail, on-

trol stak and deision level are shown in Figure 2.14. The orresponding

wathed literals list is shown in Figure 2.19.

2. Identify the onit sets by means of the impliation graph, i.e. the uts

of the graph need to be onsidered. In Figure 2.15 there are three uts

depited representing the following onit sets: fP;:Qg; fP;:T; Sg and

fP;:R;Sg.

3. Choose the most useful lause from the set of all onits. It proved to be

most e�etive to hoose a lause that has exatly one variable that was

assigned at the same deision level in whih the onit arose. This is why

the lause is also alled asserting lause. If there is more than one asserting

lause for a onit as in Figure 2.15, then take the asserting lause that

ontains the 1UIP. In Figure 2.16 there is only one UIP whih is also the

1UIP that is :Q. Therefore, the most useful lause from the onit set

is fP;:Qg.

4. Learn the lause: After determining the asserting lause C with the 1UIP

the atual onit lause is obtained by negating all assignments of the

variables within lause C. This onit lause will eventually be learned

by adding it to the set of lauses of the original formula �. In the example

from Figure 2.15 the lause :P _Q will be learned.
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2/:Q

1/P

2/:T

2/S

2/:R 2/;

ut 1 ut 2 ut 3

Figure 2.15: An impliation graph for the formula � with uts.

2/:Q

1UIP

1/P

2/:T

2/S

2/:R 2/;

Figure 2.16: The impliation graph denoted with the 1UIP.

The ombination of onit analysis and non-hronologial baktraking en-

sures that the learned lause beomes a unit lause and thereby preventing the

solver from making the same mistakes over again.

2.10.5 Restart and Forget

As mentioned in the setion on VSIDS (see 2.10.3) the runtime of the CDCL

implementation depends on the hoie of the deision variable. In ase no suit-

able variable is found within a ertain time limit it might be useful to apply

a restart, another important tehnique applied in the CDCL implementation.

With the rule Restart all urrently assigned variables will beome unassigned

while learned lauses will be maintained. The motivation for this tehnique has

to do with the fat that the solver an reah a point where inorret variable

assignments were made and the solver is not able to resolve within a reasonable

amount of time the literals that are needed to �nd a onit. In that ase a

restart is performed intending to make better variable assignments earlier on

with the previous learned information.

A further tehnique that ontributes to the performane of the CDCL solver
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(a) The initial state and the urrent trail is empty.

P

Q

R

S

T :T

Q

:P
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Q

:S R :P

T :R :P

P

Q

NULL

(b) After deiding P wathed literals are swapped, the trail is: P .

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

() After deiding :Q, no hange in the wathed literals, the trail is: P;:Q.
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P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(d) After propagating :T; S and :R, no hange of wathed literals but a onit ours

in :P _ R _ S, the trail is: P;:Q;:T; S;:R.

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(e) After baktraking the literals :Q;:T; S;:R, the trail is: P .
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P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

:P

Q

(f) After learning the lause :P _Q, the trail is still P .

Figure 2.19: The wathed literals list aording to the impliation graph from

Figures 2.15 and 2.16 as well as the ontrol stak, trail and deision level of

Figure 2.14.

is the rule Forget. With every onit lause the number of learned lauses

inreases. Reording all learned lauses an be very expensive espeially if some

lauses are repeatedly stored or if some lauses are subsumed by others. As a

result, this an lead to an exhaustion of available memory and to an additional

overhead. Therefore deleting suitable lauses from the learned lause set an be

useful. The riteria by whih the rule Forget is applied are the following: either

if the number of learned lauses is 4 times the number of original lauses or

if a spei� maximum number of learned lauses is reahed that is previously

given. In both ases the minimum of the following 2 ases is exeuted: either

half of the learned lauses are deleted or all learned lauses are deleted until a

lause is reahed that implies or has implied a urrent assignment. Furthermore,

an implementation ould also hek the subsumption of learned lauses over

existing lauses but this hek is often omitted due to performane reasons.

2.10.6 Algorithm and Strategy

As shown in the examples 2.9.1 and 2.9.2 a ertain CDCL rule appliation

order an improve the performane of the rule-based CDCL algorithm. The

algorithm 5 depits the strategy where Conit is preferred over Propagate and

Propagate over any other rule. In general the rules Deide and Propagate should

not be applied when a onit already exists. For otherwise, the additional

literals that are added via Deide or Propagate beome useless and will be
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deleted again when baktraking. Therefore the appliation of the rule Conit

is heked before any other rule. The statements from line 1 onwards desribe

the atual strategy, i.e. Conit is always preferred over any other rule and

Propagate is preferred over Deide. The reason why the rules Skip and Resolve

are always applied exessively one a onit was found is due to �nding the

lause with the 1UIP of the onit level. The rule Skip is applied to those

literals that are not involved in the onit. Via the rule Resolve the onit

lause is resolved with lauses that implied the onit and thereby yielding

a new potentially learned lause. One both rules annot be applied anymore

the state is either a fail state, Baktrak annot be applied and the algorithm

returns the fail state (M ;N ;U ; k;?) or the state is not a fail state and the

onit lause with the 1UIP was found. In the latter ase the urrent onit

lause will be learned via the rule Baktrak. At this point it is heked whether

the total number of approahed onits reahed a ertain limit, i.e. a restart is

neessary, indiating that the solver needs too muh time deteting an inorret

value assignment that was previously made. Sine the number of learned lauses

inreases with every onit it is also heked whether previously learned lauses

an be deleted, i.e. forget is neessary. In ase the urrent state has no onit,

the rule Propagate is preferred over the rule Deide in line 15 sine the hanes

of taking wrong deisions when deiding a literal's truth value dereases. The

rule Deide takes the value of the VSIDS heuristi for the urrent state into

aount.

Algorithm 5: CDCL(S)

Input : An initial state (�;N ; ;; 0;>).

Output: A �nal state S = (M ;N ;U ; k;>) or S = (M ;N ;U ; k;?)

1 while (any rule appliable) do

2 ifrule (Conit(S)) then

3 while (Skip(S) k Resolve(S)) do

4 update VSIDS sores on resolved literals;

5 end

6 update VSIDS sores on learned lause;

7 Baktrak(S);

8 sale VSIDS sores;

9 if (forget heuristi) then

10 Forget(S) redundant lauses ;

11 Restart(S);

12 else

13 ifrule (!Propagate(S)) then

14 Deide(S);

15

16

17 end

18 return(S);
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2.11 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)

alulus is not suessful in pratie whereas most of the suessful SAT solvers

implemented in 2012 are based on CDCL. In this setion I will develop some

relationships between superposition and CDCL.

The start is a modi�ation of the superposition model operator, De�ni-

tion 2.7.5. The goal of the original model operator is to reate minimal models

with respet to positive literals, i.e., if N

I

j= N for some N , then there is no

M

0

� N

I

suh that M

0

j= N . However, if the goal generating minimal models

is dropped, then there is more freedom to onstrut the model while preserving

the general properties of the superposition alulus. So, let's assume a heuristi

H that selets whether a literal should be produtive or not.

De�nition 2.11.1 (Heuristi-Based Partial Model Constrution). Given a

lause setN , an ordering � and a variable heuristiH : �! f0; 1g, the (partial)

model N

H

�

for N and signature �, with P;Q 2 � is indutively onstruted as

follows:

N

H

P

:=

S

Q�P

Æ

H

Q

Æ

H

P

:=

8

>

>

<

>

>

:

fPg if (D _ P ) 2 N;P stritly maximal and N

H

P

6j= D or

H(P ) = 1 and for all lauses (C _ :P ) 2 N;C � :P

it holds N

H

P

j= C

; otherwise

N

H

�

:=

S

P2�

Æ

H

P

T

Please note that N

I

is de�ned indutively over the lause ordering �

whereas N

H

�

is de�ned indutively over the atom ordering �.

Proposition 2.11.2. If H(P ) = 0 for all P 2 � then N

I

= N

H

�

for

any N .

Proof. The proof is by ontradition. Assume N

I

6= N

H

�

, i.e., there is a minimal

P 2 � suh that P ours only in one set out of N

I

and N

H

�

.

Case 1: P 2 N

I

but P 62 N

H

�

.

Then there is a produtive lause D = D

0

_ P 2 N suh that P is stritly

maximal in this lause andN

D

6j= D

0

. Sine P is stritly maximal in D the lause

D

0

only ontains literals stritly smaller than P . Sine both interpretations agree

on all literals smaller than P from N

D

6j= D

0

it follows N

H

P

6j= D

0

and therefore

Æ

H

P

= fPg ontraditing P 62 N

H

�

.

Case 2: P 62 N

I

but P 2 N

H

�

.

Then there is a produtive lause D = D

0

_ P 2 N suh that P is stritly

maximal in this lause and N

H

P

6j= D

0

beause H(P ) = 0. Sine P is stritly

maximal in D the lause D

0

only ontains literals stritly smaller than P . Sine
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both interpretations agree on all literals smaller than P fromN

H

P

6j= D

0

it follows

N

D

6j= D

0

and therefore Æ

D

= fPg ontraditing P 62 N

I

.

So the new model operator N

H

�

is a generalization of N

I

. Next, I will show

that with the help of N

H

�

a lose relationship between the model operator run

by the CDCL alulus and the superposition model operator an be established.

This result an then further be used to relate the abstrat superposition redun-

dany riteria to CDCL. But before going into the relationship I �rst show that

the generalized superposition partial model operator N

H

�

supports the standard

superposition ompleteness result, analogous to Theorem 2.7.9. Reall that the

same notion of redundany, De�nition 2.7.3, is used.

Theorem 2.11.3. If N is saturated up to redundany and ? =2 N then N is

satis�able and N

H

�

j= N .

Proof. The proof is by ontradition. So I assume (i) any lause C derived by

Superposition Left or Fatoring from N that C is redundant, i.e., N

�C

j= C,

(ii) ? =2 N and (iii) N

H

�

6j= N . Then there is a minimal, with respet to �,

lause C

1

_L 2 N suh that N

I

6j= C

1

_L and L is a maximal literal in C

1

_L.

This lause must exist beause ? =2 N .

The lause C

1

_ L is not redundant. For otherwise, N

�C

1

_L

j= C

1

_ L and

hene N

H

�

j= C

1

_ L, beause N

H

�

j= N

�C

1

_L

, a ontradition.

I distinguish the ase whether L is a positive or a negative literal. Firstly,

assume L is positive, i.e., L = P for some propositional variable P . Now if P is

stritly maximal in C

1

_ P then atually Æ

H

P

= fPg and hene N

H

P

j= C

1

_ P , a

ontradition. So P is not stritly maximal. But then atually C

1

_ P has the

form C

0

1

_ P _ P and Fatoring derives C

0

1

_ P where (C

0

1

_ P ) � (C

0

1

_ P _ P ).

Now C

0

1

_P is not redundant, stritly smaller than C

1

_L, we have C

0

1

_P 2 N

and N

H

�

6j= C

0

1

_ P , a ontradition against the hoie that C

1

_ L is minimal.

Seondly, assume L is negative, i.e., L = :P for some propositional variable

P . Then, sine N

H

�

6j= C

1

_:P we know P 2 N

I

, i.e., Æ

H

P

= fPg. There are two

ases to distinguish. Firstly, there is a lause C

2

_ P 2 N where P is stritly

maximal and by de�nition (C

2

_ P ) � (C

1

_ :P ). So a Superposition Left

inferene derives C

1

_ C

2

where (C

1

_ C

2

) � (C

1

_ :P ). The derived lause

C

1

_ C

2

annot be redundant, beause for otherwise either N

�C

2

_P

j= C

2

_ P

or N

�C

1

_:P

j= C

1

_ :P . So C

1

_ C

2

2 N and N

H

�

6j= C

1

_ C

2

, a ontradition

against the hoie that C

1

_L is minimal. Seondly, there is no lause C

2

_P 2 N

where P is stritly maximal but H(P ) = 1. But a further ondition for this ase

is that there is no lause (C

1

_ :P ) 2 N suh that N

H

P

6j= C

1

ontraditing the

above hoie of C

1

_ :P .

Realling Setion 2.7 Superposition is based on an ordering �. It relies

on a model assumption N

I

, De�nition 2.7.5 or its generalization N

H

�

, De�-

nition 2.11.1. Given a set N of lauses, either N

I

(N

H

�

) is a model for N , N

ontains the empty lause, or there is an inferene on the minimal false lause

with respet to �, see the proof of Theorem 2.7.9 or Theorem 2.11.3, respe-

tively.
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CDCL is based on a variable seletion heuristi. It omputes a model as-

sumption via deision variables and propagation. Either this assumption is a

model of N , N ontains the empty lause, or there is a bakjump lause that is

learned.

For a CDCL state (M;N;U; k;D) generated by an appliation of the rule

Conit, whereM = L

1

; : : : ; L

n

any following Resolve step atually orresponds

to a superposition step between a minimal false lause and its produtive oun-

terpart, where atom(L

1

) � atom(L

2

) � : : : � atom(L

n

). Furthermore, for a

positive deision literal L

>

m

ourring in M the heuristi H(atom(L

m

)) = 1 and

H(atom(L

m

)) = 0 otherwise. Then the learned lause is in fat generated by su-

perposition with respet to the model operator N

H

�

. The following propositions

present this relationship between Superposition and CDCL in full detail.

Proposition 2.11.4. Let (M;N;U; k;D) be a CDCL state generated by a

strategy with eager appliation of Conit and Propagate, in this order. LetM =

L

1

; : : : ; L

n

, H(atom(L

m

)) = 1 for any positive deision literal L

>

m

ourring in

M and H(atom(L

m

)) = 0 otherwise. The superposition ordering is atom(L

1

) �

atom(L

2

) � : : : � atom(L

n

). Then

1. L

n

is a propagated literal.

2. The resolvent between C _:L

k

and the lause C

0

_L

k

propagating L

k

is

a superposition inferene and the onlusion is not redundant.

Proof. 1. Assume L

n

is a deision literal. Then, sine Conit and Propagation

are applied eagerly,D has the formD = D

0

_:L

n

. But then at trail L

1

; : : : ; L

n�1

the lause D

0

_ :L

n

propagates :L

n

with respet to L

1

: : : L

n�1

, so with ea-

ger propagation, the literal L

n

annot be deision literal but its negation was

propagated by a lause D

0

_ :L

n

2 N .

2. Both C and C

0

only ontain literals with variables from atom(L

1

);

: : : ; atom(L

k�1

). Sine we assume dupliate literals to be removed and tau-

tologies to be deleted, the literal :L

k

is stritly maximal in C _ :L

k

and L

k

is stritly maximal in C

0

_ L

k

. So resolving on L

k

is a superposition inferene

with respet to the variable ordering atom(L

1

) � atom(L

2

) : : : � atom(L

k

).

Now assume C_C

0

is redundant, i.e., there are lauses D

1

; : : : ; D

n

from N with

D

i

� C _C

0

and D

1

; : : : ; D

n

j= C _C

0

. Sine C _C

0

is false in L

1

: : : L

k�1

there

is at least one D

i

that is also false in L

1

: : : L

k�1

. A ontradition against the

assumption that L

1

: : : L

k�1

does not falsify any lause in N , i.e., rule Conit

was applied eagerly.

Proposition 2.11.4 is atually a nie explanation for the eÆieny of the

CDCL proedure: a learned lause is never redundant. Reall that redundany

here means that the learned lause C is not entailed by smaller lauses in N[U .

Furthermore, the ordering underlying Proposition 2.11.4 is based on the trail,

i.e., it hanges during a CDCL run. For superposition it is well known that

hanging the ordering is not ompatible with the notion of redundany, i.e.,

superposition is inomplete when the ordering may be hanged in�nitely often

and the superposition redundany notion is applied.
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Example 2.11.5. Consider the superposition left inferene between the lauses

P _Q and R _ :Q with ordering P < R < Q resulting in P _R. Changing the

ordering to Q < P < R the inferene P _ R beomes redundant. So ipping

in�nitely often between P < R < Q and Q < P < R is already suÆient to

prevent any saturation progress.

Although Example 2.11.5 shows that hanging the ordering is not ompati-

ble with redundany and superposition ompleteness, Proposition 2.11.4 proves

that any CDCL learned lause is not redundant in the superposition sense and

the CDCL proedure hanges the ordering and is omplete. This relationship

shows the power of reasoning with respet to a model assumption. The model

assumption atually prevents the generation of redundant lauses. Nevertheless,

also in the CDCL framework ompleteness would be lost if redundant lauses

are eagerly removed in general. So either the ordering is not hanged and the

superposition redundany notion an be eagerly applied or only a weaker notion

of redundany is possible while keeping ompleteness.

The ruial point is that for the superposition alulus the ordering is also

the bases for termination and ompleteness. If the ompleteness proof an be

deoupled from the ordering, then the ordering might be hanged in�nitely often

and other notions of redundany beome available. However, these new notions

of redundany need to be ompatible with the ompleteness, termination proof.

De�nition 2.11.6 (Abstrat Length Redundany). A lause C is length redun-

dant with respet to a lause set N if N

�jCj

j= C, where N

�jCj

= fD j jDj �

jCjg.

Theorem 2.11.7 (Length Redundany and Superposition). Arbitrary Order-

ing Changes plus fairness plus length redundany preserves ompleteness.

Theorem 2.11.8 (Length Redundany and CDCL). At any time length re-

dundant lauses may be removed.

2.12 Redundany

One of the most suessful and robust heuristis is to keep the formula, lause

set \small". This heuristi is already the motivation for the spei� renaming

algorithm presented in Setion 2.5.3. So getting rid of superuous, i.e., redun-

dant formulas or lauses is typially bene�ial to any eÆient reasoning. The

setion on normal form transformation (Setion 2.5) and the setions on CDCL

and superposition already introdued some redundany riteria. In this setion

they are extended for the ase of lause sets.

There is an important di�erene between lause redundany before a CDCL

or superposition alulus starts reasoning and lause redundany while the al-

ulus (superposition, CDCL) is operating on a set of lauses. For the former

it is suÆient that the redundany proedure is sound and terminating. For

the latter the proedure has in addition to respet the redundany notion of

the respetive alulus in order to preserve ompleteness, see De�nition 2.7.3,

Example 2.11.5, and Theorem 2.11.8, Theorem 2.11.7.
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2.12.1 Redundany before Superposition and CDCL

Here are some standard rules for removing redundant lauses before superposi-

tion or CDCL starts. Subsumption, Tautology Deletion and Subsumption Res-

olution have already been introdued in Setion 2.7. Purity and Bloked Clause

Deletion are new.

Subsumption Deletion

(N ℄ fC

1

; C

2

g) )

RBSC

(N [ fC

1

g)

provided C

1

� C

2

Tautology Deletion

(N ℄ fC _ P _ :Pg) )

RBSC

(N)

Subsumption Resolution

(N ℄ fC

1

_ L;C

2

_ Lg) )

RBSC

(N [ fC

1

_ L;C

2

g)

where C

1

� C

2

Purity

(N ℄ fC

1

_ L; : : : ; C

k

_ Lg) )

RBSC

(N)

where L, L do not our in N

Bloked Clause Elimination

(N ℄ fC

1

_ L; : : : ; C

k

_ L;C

0

1

_ L; : : : ; C

0

l

_ Lg) )

RBSC

(N)

where L, L do not our in N and all resolvents on L between any C

i

_ L and

C

0

j

_ L result in tautologies

Example 2.12.1. Consider a lause set onsisting of the �ve lauses

(1) P _Q

(2) P _Q _ R _ S

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Clause (1) subsumes lause (2). Subsumption resolution is appliable to

lause (2) and lause (5) resulting in P _ R _ S. Purity is appliable to P .

Bloked lause elimination is not appliable.

Applying �rst subsumption deletion results in the lauses

(1) P _Q

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Now subsumption resolution is no longer appliable, but bloked lause elimina-

tion is to R and lauses (3), (4). After appliation of bloked lause elimination

the resulting lauses are

(1) P _Q

(5) :Q _ S

Now P and S are pure and after applying purity the result is the empty set of

lauses indiating satis�ability.
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For the above Example 2.12.1 other rule appliation orderings are possible,

e.g., starting with purity on P . Nevertheless, any appliation ordering results in

an empty set of lauses. However, )

RBSC

is not onuent.

Lemma 2.12.2 ()

RBSC

terminates).

Proof. Exerise

Lemma 2.12.3 ()

RBSC

is sound). If (N))

RBSC

(N

0

) then N is satis�able i�

N

0

is.

Proof. ): All rules remove lauses exept subsumption resolution. Removing

lauses obviously preservers satis�ability. For subsumption resolution any model

satisfying C

1

_ L and C

2

_ L has to satisfy C

1

ot C

2

. Sine C

1

� C

2

it satis�es

C

2

.

(: The diretion is obvious for Subsumption Deletion, Tautology Deletion, and

Subsumption Resolution. Sine, atually, Purity is a speial ase of Bloked

Clause Elimination, it suÆes to show the ase of Bloked Clause Elimination.

In this ase N = N

0

℄ fC

1

_L; : : : ; C

k

_L;C

0

1

_L; : : : ; C

0

l

_Lg and L, L do not

our in N

0

and all resolvents on L between any C

i

_ L and C

0

j

_ L result in

tautologies. Let A be a model for N

0

. Obviously, being A a model for N does

not depend on the truth value of L, beause neither L nor L ours in N . If A

does not satisfy some lause C

i

_ L (analogously C

0

j

_ L), then A(L) = 0 and

A(C

i

) = 0. Sine all ombinations C

i

_C

0

j

, for any j are tautologies, A(C

0

j

) = 1

for all j. Hene A

0

whih is like A exept that A

0

(L) = 1 is a model for N .

2.12.2 Redundany while Superposition and CDCL

2.13 Complexity

This book does not fous on omplexity but on how to build systems that are

useful for seleted appliations. Nevertheless, any system, alulus presented in

this hapter on SAT has a worst ase exponential running time. So it annot run

eÆiently on any SAT instane. So some bakground knowledge about relevant

omplexity results is useful. Here I onentrate on a personal seletion of \las-

sis", omplexity results everybody interested in propositional logi reasoning

should know.

The pigeon hole formulas are suh a lassi, beause they were among the

�rst deteted formulas that don't have polynomial length resolution proofs. In

addition, they explain why the renaming tehniques introdued in Setion 2.5.3

are not only useful to prevent an explosion in the number of generated lauses

out of a formula, but also for the afterwards reasoning proess.

De�nition 2.13.1 (Pigeon Hole Formulas ph(n)). For some given n and propo-

sitional variables P

i;j

, where 1 � j � n, 1 � i � n+1, the orresponding pigeon
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hole formula (lause set) ph(n) is

ph(n) =

^

1�i�n+1

P

i;1

_ : : : _ P

i;n

^

^

1�j�n

^

1 � i; k � n+ 1

i < k

:P

i;j

_ :P

k;j

The intuition behind a variable P

i;j

is that it is true i� pigeon i sits in hole

j. Then the formulas P

i;1

_ : : :_P

i;n

express that every pigeon has to sit in some

hole and the formulas :P

i;j

_ :P

k;j

that a hole an host at most one pigeon.

Sine there is one more pigeon than holes, the formula is unsatis�able.

Note that the number of lauses of a pigeon hole formula ph(n) grows ubi

in n. The famous theorem on the pigeon whole formulas says that any resolution

proof showing unsatis�ability of ph(n) has a length at least exponential in n,

i.e., no resolution-based system an eÆiently show unsatis�ability of a pigeon

hole formula.

Theorem 2.13.2 (Haken [23℄). The length of any resolution refutation of ph(n)

is exponential in n.

Reall that any refutation of a CDCL proedure orresponds to a resolution

refutation, where eah onit generates some new resolvents. Now, a CDCL

proedure solves the pigeon hole problem by an enumeration of all possible

ombinations how to put the n + 1 pigeons into the n holes. It guesses some

pigeon in some whole, potentially propagates the onsequenes of the deision,

guesses the next one and so on until a onit for the partiular guess shows that

there is one hole missing for the �nal pigeon. Then it baktraks by remembering

that for the partiular guess, i.e., ombination pigeons, holes, there is no solution.

The CDCL proedure never \reognizes" the fat that the problem is ompletely

symmetri in pigeons and holes, e.g., one it has shown that there is no solution

with pigeon 1 in hole 1 (P

1;1

true) then the problem annot be solved at all. It

is not neessary anymore to test the holes 2 to n for pigeon 1, beause these

ases are symmetri. This is an informal explanation for the above theorem.

The pigeon hole problem an be easily solved by an indutive argument. For

ph(n) we put pigeon n+1 in hole n. Then the problem is solvable i� ph(n� 1)

has a solution. Repeating this argument n � 1 times it remains to show that

there is no solution for ph(1), i.e., the lause set P

1;1

, P

2;1

, :P

1;1

_ :P

2;1

is

unsatis�able.

This reasoning an be perfetly simulated by resolution if additional lauses

over extra variables are added to ph(n). Let B

k

i;j

be fresh propositional variables

where 2 � k � n, 1 � j < k, 1 � i � k, where we add the lauses resulting from

B

n

i;j

$ (P

i;j

_ (P

i;n

^ P

n+1;j

)) for the �rst step

B

k

i;j

$ (B

k+1

i;j

_ (B

k+1

i;k

^ B

k+1

k+1;j

)) for all subsequent steps

to ph(n), where 2 � k � n � 1 and the i; j run in the limits orresponding to

B

k

i:j

or B

n

i:j

, respetively. Sine the B

k

i;j

are fresh and there is only one de�ning

equivalene for eah B

k

i;j

, the resulting problem is unsatis�able i� the original
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is. Eah equivalene results in four lauses, e.g., the �rst equivalene generates

the lauses B

n

i;j

_:P

i;j

, B

n

i;j

_:P

i;n

_:P

n+1;j

, :B

n

i;j

_P

i;j

_P

i;n

, :B

n

i;j

_P

i;j

_

P

n+1;j

. Thus there are only polynomially many lauses added to ph(n). Now the

additional lauses enable to reprodue via resolution the indutive argument,

where for eah \indution step" only polynomially many resolution steps are

needed. Thus the extended pigeon hole problem an be refuted by resolution in

polynomially many steps [14℄.

For example, for the ase n = 2 the pigeon hole lauses are

(1) P

1;1

_ P

1;2

(2) P

2;1

_ P

2;2

(3) P

3;1

_ P

3;2

(4) :P

1;1

_ :P

2;1

(5) :P

1;1

_ :P

3;1

(6) :P

2;1

_ :P

3;1

(7) :P

1;2

_ :P

2;2

(8) :P

1;2

_ :P

3;2

(9) :P

2;2

_ :P

3;2

and the additional equivalenes de�ning the B

2

i;j

are

B

2

1;1

$ (P

1;1

_ (P

1;2

^ P

3;1

))

B

2

2;1

$ (P

2;1

_ (P

2;2

^ P

3;1

))

Now from :B

2

1;1

_ P

1;1

_ P

3;1

, :B

2

2;1

_ P

2;1

_ P

3;1

with (1), (2), (4), (5), (6), (7)

via resolution the lause

(10) :B

2

1;1

_ :B

2

2;1

an be derived. From B

2

1;1

_ :P

1;1

, B

2

1;1

_ :P

1;2

_ :P

3;1

with (1), (3), (8) via

resolution the lause

(11) B

2

1;1

an be derived. Analogously, from B

2

2;1

_ :P

2;1

, B

2

2;1

_ :P

2;2

_ :P

3;1

with (2),

(3), (9) via resolution the lause

(12) B

2

2;1

an be derived. Now, (10), (11), (12) onstitute ph(1), i.e., the above resolution

steps suessfully perform the redution from ph(2) to ph(1).

C

There are two reasons why I disuss the pigeon hole problem in suh

detail. First, it shows that the invention of new names (propositional

variables) for subformulas, an lead to an exponential redution in

proof size. So it onstitutes a further justi�ation for renaming during CNF

transformation (see Setion 2.5.3). However, in general, there is no easy answer

when additional names help in proof length redution or in proof searh. Seond,
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and in my opinion even more important, the pigeon hole problem example niely

shows that \indutive reasoning" an be done in propositional logi and that it

an pay o�. For many real world problems, e.g., hardware veri�ation, indutive

reasoning is key to solve the problems. At the time of this writing, researh

in how to automatially detet and make use of indutive properties has just

started for propositional logi. This holds as well and gets even more diÆult

for more expressive logis, suh as �rst-order logi.

For the rest of this setion I will study some well-known lasses for whih

SAT an be solved in polynomial time, namely, Horn-SAT and 2-SAT. Horn SAT

is the lass of lauses where eah lause has at most one positive literal, 2-SAT

the lass of lauses where eah lause has at most two literals. For both lauses

SAT is deidable in polynomial time. Atually, the 2-SAT lass onstitutes a

sharp border between polynomially solvable and NP-omplete, beause the 3-

SAT lass is already NP-omplete.

De�nition 2.13.3 (Horn-SAT). A propositional lause set N belongs to the

lass of Horn-SAT problems if every lause ontains at most one positive literal.

De�nition 2.13.4 (k-SAT). A propositional lause set N belongs to the lass

of k-SAT problems if every lause ontains at most k literals.

Proposition 2.13.5. Any Horn-SAT lause set N an be deided in time linear

in the size of N .

Proof. Superposition with seletion is omplete for SAT (Theorem 2.11.3). So

onsider a superposition saturation for N where in every lause ontaining a

negative literal it is seleted. Then the saturation proess has two nie properties.

First, any superposition inferene is an inferene between a positive unit lause

and a lause ontaining at least one negative literal. Seond, there is always a

lause where all negative literals an be resolved away by positive unit lauses

or the lause set N is satis�able. Combining the two properties results in a

linear-time algorithm for Horn-SAT.

Atually, the proof of the above proposition implies that the CDCL rules

Propagate and Conit (see Setion 2.9) are omplete for Horn-SAT. Another

onsequene is that unit superposition, a restrition to superposition where for

all inferenes one parent lause must be a unit lause, is also omplete for Horn-

SAT. For unit superposition the result an even be reversed. If for some lause

setN there is a unit superposition refutation, then the subset of lauses involved

in the unit refutation an be transformed into a Horn lause set by ipping signs

of literals.

The lause set P _Q, :P _R, :R_Q, :Q is unsatis�able and refutable by

unit superposition. It is not Horn beause of the lause P _Q. Now by ipping

the sign of Q in all lauses results in the lause set P _ :Q, :P _R, :R _ :Q,

Q whih is Horn, equisatis�able, and still unit refutable.

Proposition 2.13.6. Any 2-SAT lause set N an be deided in time polyno-

mial in the size of N .
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Proof. (Idea) Firstly, all unit lauses an be eliminated by reursively resolv-

ing away the respetive literals, following the algorithm of Proposition 2.13.5.

For a lause set N ontaining only lauses of length two a direted graph is

onstruted. The nodes are the propositional literals from N . For eah lause

L_K 2 N , the graph ontains the two direted edges (L;K) and (K;L). Then

N is unsatis�able i� there is a yle in the graph ontaining two nodes L, L.

This an be deided in time at most quadrati in N .

Interestingly, 2-SAT onstitutes the border to NP-ompleteness, beause 3-

SAT is already NP-omplete. This an be seen by reduing any lause set to a

satis�ability equivalent 3-SAT lause set via the following transformation. For

any lause

L

1

_ : : : _ L

n

onsisting of more than three literals (n > 3) replae the lause by the lauses

L

1

_ : : : _ L

bn=2

_ P

L

bn=2+1

_ : : : _ L

n

_ :P

where P is a fresh propositional variable. Obviously, L

1

_ : : : _ L

n

is satis�able

i� L

1

_ : : : _ L

bn=2

_ P , L

bn=2+1

_ : : : _ L

n

_ :P are.

Proposition 2.13.7. 3-SAT is NP-omplete.

2.14 Appliations

For the appliation of propositional logi on an arbitrary problem it needs to

be enoded into a propositional formula �. The satis�ability of � an then be

heked via one of the aluli developed in this hapter, e.g. Resolution or DPLL.

In ase � is satis�able the orresponding alulus derives a model whih has to

be interpreted as a solution to the original problem. The unsatis�ability of �

must be interpreted orrespondingly.

2.14.1 Sudoku

As a suitable appliation of propositional logi serves the Sudoku puzzle. In

hapter 1.1 a spei� 4� 4 Sudoku puzzle was solved using a spei� alulus.

In this setion a general n

2

� n

2

Sudoku puzzle is enoded into propositional

logi and exemplarily the Resolution alulus from this hapter is applied to a

4� 4 Sudoku puzzle.

For the enoding propositional variables P

d

i;j

are de�ned where P

d

i;j

is true

i� the value of square (i; j) is d. Square boxes are denoted by Q

i;j

where Q

i;j

in-

ludes the squares (i; j); : : : ; (i+n�1; j+n�1). The orresponding propositional

lauses are onstruted as follows:

1. For every initially assigned square (i; j) with value d generate P

d

i;j

2. For every square (i; j) generate P

1

i;j

_ : : : _ P

n

2

i;j
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3. For every square (i; j) and pair of values d < d

0

generate :P

d

i;j

_ :P

d

0

i;j

4. For every value d and olumn i generate P

d

i;1

_ : : :_P

d

i;n

2

(analogously for

rows)

5. For every value d and square box Q

i;j

generate P

d

i;j

_ : : : _ P

d

i+n�1;j+n�1

6. For every value d, olumn i and pair of rows j < j

0

generate :P

d

i;j

_:P

d

i;j

0

(analogously for rows)

7. For every value d, square box Q

i;j

and pair of squares (k; l) <

lex

(k

0

; l

0

)

where i � k; k

0

< i+ n and j � l; l

0

< j + n generate :P

d

k;l

_ :P

d

k

0

;l

0

The orresponding formula � is the onjuntion of eah subformula generated

by the steps 1 to 7. This makes a total of m+ n

4

+

1

2

n

6

(n

2

� 1) + 2n

4

+ n

4

+

1

2

n

6

(n

2

� 1) +

1

2

n

6

(n

2

� 1) = m + 4n

4

+

3

2

n

6

(n

2

� 1) lauses where m is the

number of initially assigned squares.

After the appliation of a propositional logi alulus the remaining unit

lauses P

d

i;j

, i.e. the missing numbers to the initial Sudoku puzzle, are derived if

the enoded formula is satis�able. Otherwise there is no solution to the Sudoku

puzzle.

1 2 3 4

1 1

2 1

3 2

4 4

Figure 2.20: A 4� 4 Sudoku

The appliation of this enoding on the puzzle from Figure 2.20 yields for

example the lauses P

1

3;4

_ P

2

3;4

_ P

3

3;4

_ P

4

3;4

, :P

2

2;3

_ :P

2

3;3

, :P

2

2;3

_ :P

2

4;3

and

P

2

2;3

. Applying the rule Resolution from the Resolution alulus from hapter 2.6

results in:

(N ℄ f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g )

RES

(N [ f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g [ f:P

2

3;3

g) and

(N

0

℄fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g))

RES

(N

0

[fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g[

fP

1

3;4

_ P

3

3;4

_ P

4

3;4

g) )

�

RES

(N

00

[ fP

2

3;4

g) see Figure 2.21. After exhaustive

appliation of the Resolution alulus the remaining unit onstraints are derived

and the solution is found.

2.14.2 Hardware Veri�ation

Another example for the appliation of propositional logi is the veri�ation of

logi hardware iruits. Sine spei� logi hardware iruits an be transformed

into CNF the satis�ability of small logi iruits as well as ertain properties of

logi iruits an be heked with a propositional alulus from this hapter. This
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1 2 3 4

1 1

2 1

3 2

4 2 4

Figure 2.21: A 4� 4 Sudoku after generating the unit onstraint P

2

3;4

hapter shows how to enode spei� logi iruits into propositional logi and

how to apply the enoding on an exemplary logi iruit as shown in Figure 2.22.

This hapter onsiders logi iruits with three di�erent types of gates G

i

:

AND-, OR- and NOT-gates. Eah gate has one output, AND- and OR-gates

have two inputs whereas the NOT-gate has only one input. For the enoding of

the logi iruits a propositional variable Q

i

is de�ned for eah gate G

i

where

Q

i

is true i� the gate G

i

has output value 1. The propositional lauses are

onstruted as follows:

1. For every AND-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

^Q

k

)

whih is equivalent to (:Q

i

_Q

j

) ^ (:Q

i

_Q

k

) ^ (:Q

j

_ :Q

k

_Q

i

)

2. For every OR-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

_ Q

k

)

whih is equivalent to (:Q

i

_Q

j

_Q

k

) ^ (:Q

j

_Q

i

) ^ (:Q

k

_Q

i

)

3. For every NOT-gate G

i

with input Q

j

we have Q

i

$ :Q

j

whih is equiv-

alent to (:Q

i

_ :Q

j

) ^ (Q

j

_Q

i

).

The orresponding formula � is the onjuntion of all lauses generated by

the steps 1 to 3. After generating this enoding a propositional alulus from

hapter 2 an be applied in order to hek ertain properties of logi iruits

(note that the aluli presented in hapter 2 are ineÆient on larger logi iruit

onstrutions). Some of the properties that an be heked are for example the

satis�ability of logi iruits given a partial truth assignment � (whih assigns

boolean values to outputs), the satis�ability of logi iruits in ase of a reursive

onstrution, the equivalene of two logi iruits or to hek if ertain properties

for example Q

0

! Q

5

for the logi iruit in Figure 2.22 hold.

As an example the satis�ability of the logi iruit in Figure 2.22 under a

given partial truth assignment �(Q

0

) = 1 and �(Q

5

) = 1 an be heked using

the DPLL alulus:

The appliation of the enoding to the logi iruit of Figure 2.22 to-

gether with the partial truth assignment � yields a total of 12 lauses:

N = fQ

0

; Q

5

;:Q

4

_ Q

2

_ Q

1

;:Q

2

_ Q

4

;:Q

1

_ Q

4

;:Q

2

_ :Q

0

; Q

2

_

Q

0

;:Q

3

_ :Q

1

; Q

3

_ Q

1

;:Q

5

_ Q

4

;:Q

5

_ Q

3

;:Q

4

_ :Q

3

_ Q

5

g. Apply-

ing the DPLL alulus we ahieve: (�;N) )

Propagate

DPLL

(Q

0

;N) )

Propagate

DPLL

(Q

0

Q

5

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

;N))

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

;N). LetM = (Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

)
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Q

0

G

2

G

4

G

5

Q

1

G

3

Figure 2.22: A logi iruit with two NOT-gates (G

2

and G

3

), an OR-gate G

4

and an AND-gate G

5

then the logi iruit is unsatis�able under the given truth assignment sine

M j= :N and there is no deision literal in M .

If the logi iruit of Figure 2.22 is onsidered without a partial truth as-

signment then the onstrution is satis�able for example with M = (:Q

0

:Q

1

).

If the gate G

4

of Figure 2.22 is replaed by an AND-gate instead of an OR-

gate then the onstrution will always be unsatis�able independent of any truth

assignment.

Histori and Bibliographi Remarks

Although already Greek philosophers like Aristotle (384 BC { 322 BC) were

interested in \truth of propositions" the syntax and semantis of propositional

logi goes bak to the modern logiians, mathematiians and philosophers Au-

gustus de Morgan (1806 { 1871), George Boole (1815 { 1864), Charles Sanders

Peire (1839 { 1914), and Gottlob Frege (1848 { 1925). In partiular, today

Boole's alulus [10℄ is known as \propositional logi". For a nie histori per-

spetive see Martin Davis's book [16℄.
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Chapter 3

First-Order Logi

3.1 Syntax

De�nition 3.1.1 (Many-Sorted Signature). A many-sorted signature � =

(S;
;�) is a pair onsisting of a �nite non-empty set S of sort symbols, a

non-empty set 
 of operator symbols (also alled funtion symbols) over S and

a set � of prediate symbols. Every operator symbol f 2 
 has a unique sort

delaration f : S

1

� : : :�S

n

! S, indiating the sorts of arguments (also alled

domain sorts) and the range sort of f , respetively, for some S

1

; : : : ; S

n

; S 2 S

where n � 0 is alled the arity of f , also denoted with arity(f). An operator

symbol f 2 
 with arity 0 is alled a onstant. Every prediate symbol P 2 �

has a unique sort delaration P � S

1

� : : : � S

n

. A prediate symbol P 2 �

with arity 0 is alled a propositional variable. For every sort S 2 S there must

be at least one onstant a 2 
 with range sort S.

In addition to the signature �, a variable set X , disjoint from 
 is assumed, so

that for every sort S 2 S there exists a ountably in�nite subset of X onsisting

of variables of the sort S. A variable x of sort S is denoted by x

S

.

De�nition 3.1.2 (Term). Given a signature � = (S;
;�), a sort S 2 S and

a variable set X , the set T

S

(�;X ) of all terms of sort S is reursively de�ned

by (i) x

S

2 T

S

(�;X ) if x

S

2 X , (ii) f(t

1

; : : : ; t

n

) 2 T

S

(�;X ) if f 2 
 and

f : S

1

� : : :� S

n

! S and t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng.

The sort of a term t is denoted by sort(t), i.e., if t 2 T

S

(�;X ) then sort(t) =

S. A term not ontaining a variable is alled ground.

For the sake of simpliity it is often written: T (�;X ) for

S

S2S

T

S

(�;X ), the

set of all terms, T

S

(�) for the set of all ground terms of sort S 2 S, and T (�)

for

S

S2S

T

S

(�), the set of all ground terms over �.

De�nition 3.1.3 (Equation, Atom, Literal). If s; t 2 T

S

(�;X ) then s � t is an

equation over the signature �. Any equation is an atom (also alled atomi for-

mula) as well as every P (t

1

; : : : ; t

n

) where t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng

93
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and P 2 �, arity(P ) = n, P � S

1

� : : : � S

n

. An atom or its negation of an

atom is alled a literal.

The literal s

.

� t denotes either s � t or t � s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal :(s � t) is written

as s 6� t.

C

Non equational atoms an be transformed into equations: For this a

given signature is extended for every prediate symbol P as follows:

(i) add a distint sort B to S, (ii) introdue a fresh onstant true of

the sort B to 
, (iii) for every prediate P , P � S

1

� : : : � S

n

add a fresh

funtion f

P

: S

1

; : : : ; S

n

! B to 
, and (iv) enode every atom P (t

1

; : : : ; t

n

) as

a funtion f

P

: S

1

; : : : ; S

n

! B. Thus, prediate atoms are turned into equations

f

P

(t

1

; : : : ; t

n

) � true. are overloaded here.

De�nition 3.1.4 (Formulas). The set FOL(�;X ) of many-sorted �rst-order

formulas with equality over the signature � is de�ned as follows for formulas

�;  2 F

�

(X ) and a variable x 2 X :

FOL(�;X ) Comment

? falsum

> verum

P (t

1

; : : : ; t

n

); s � t atom

(:�) negation

(� ^  ) onjuntion

(� _  ) disjuntion

(�!  ) impliation

(�$  ) equivalene

8x:� universal quanti�ation

9x:� existential quanti�ation

A onsequene of the above de�nition is that PROP(�) � FOL(�

0

;X ) if

the propositional variables of � are ontained in �

0

as prediates of arity 0. A

formula not ontaining a quanti�er is alled quanti�er-free.

De�nition 3.1.5 (Positions). It follows from the de�nitions of terms and for-

mulas that they have tree-like struture. For referring to a ertain subtree,

alled subterm or subformula, respetively, sequenes of natural numbers are

used, alled positions (as introdued in Chapter 2.1.3). The set of positions of

a term, formula is indutively de�ned by:

pos(x) := f�g if x 2 X

pos(�) := f�g if � 2 f>;?g

pos(:�) := f�g [ f1p j p 2 pos(�)g

pos(� Æ  ) := f�g [ f1p j p 2 pos(�)g [ f2p j p 2 pos( )g

pos(s � t) := f�g [ f1p j p 2 pos(s)g [ f2p j p 2 pos(t)g

pos(f(t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(P (t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(8x:�) := f�g [ f1p j p 2 pos(�)g

pos(9x:�) := f�g [ f1p j p 2 pos(�)g
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where Æ 2 f^;_;!;$g and t

i

2 T (�;X ) for all i 2 f1; : : : ; ng.

The pre�x orders (above, stritly above and parallel), the seletion and re-

plaement with respet to positions are de�ned exatly as in Chapter 2.1.3.

An term t (formula �) is said to ontain another term s (formula  ) if t

p

= s

(�

p

=  ). It is alled a strit subexpression if p 6= �. The term t (formula �)

is alled an immediate subexpression of s (formula  ) if jpj = 1. For terms a

subexpression is alled a subterm and for formulas a subformula, respetively.

The size of a term t (formula �), written jtj (j�j), is the ardinality of pos(t),

i.e., jtj := j pos(t)j (j�j := j pos(�)j). The depth of a term, formula is the maximal

length of a position in the term, formula: depth(t) := maxfjpj j p 2 pos(t)g

(depth(�) := maxfjpj j p 2 pos(�)g). The set of all variables ourring in a

term t (formula �) is denoted by vars(t) (vars(phi)) and formally de�ned as

vars(t) := fx 2 X j x = tj

p

; p 2 pos(t)g (vars(�) := fx 2 X j x = �j

p

; p 2

pos(�)g). A term t (formula �) is ground if vars(t) = ; (vars(�) = ;).

Note that vars(8x:a � b) = ; where a; b are onstants. This is justi�ed by the

fat that the formula does not depend on the quanti�er, see semantis below.

In 8x:� (9x:�) the formula � is alled the sope of the quanti�er. An o-

urrene q of a variable x in a formula � (�j

q

= x) is alled bound if there is

some p < q with �j

p

= 8x:�

0

or �j

p

= 9x:�

0

. Any other ourrene of a vari-

able is alled free. A formula not ontaining a free ourrene of a variable is

alled losed. If fx

1

; : : : ; x

n

g are the variables freely ourring in a formula

� then 8x

1

; : : : ; x

n

:� and 9x

1

; : : : ; x

n

:� (abbreviations for 8x

1

:8x

2

: : :8x

n

:�,

9x

1

:8x

2

: : :8x

n

:�, respetively) are the universal and the existential losure of

�.

Example 3.1.6. For the literal :P (f(x; g(a))) the atom P (f(x; g(a))) is an

immediate subformula of ourring at position 1. The terms x and g(a) are

strit subterms ourring at positions 111 and 112, respetively. The for-

mula :P (f(x; g(a)))[b℄

111

= :P (f(b; g(a))) is obtained by replaing x with b.

pos(:P (f(x; g(a)))) = f�; 1; 11; 111; 112; 1121gmeaning its size is 6, its depth 4

and vars(:P (f(x; g(a)))) = fxg.

The polarity of a subformula  = �j

p

at position p is pol(�; p) where pol is

reursively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

pol(P (t

1

; : : : ; t

n

); p) := 1

pol(t � s; p) := 1

pol(8x:�; 1p) := pol(�; p)

pol(9x:�; 1p) := pol(�; p)


