
3.6. FIRST-ORDER TABLEAU 131

Q(a, a) ∨ ¬P (a)
Q(b, b) ∨ ¬P (b)
Q(g(a), g(a)) ∨ ¬P (g(a))
. . .
¬P (a) ∨ P (g(a))
¬P (b) ∨ P (g(b))
¬P (g(a)) ∨ P (g(g(a)))
. . .}

is satisfiable. For example by the Herbrand models
I1 : = ∅
I2 : = {P (b), Q(b, b), P (g(b)), Q(g(b), g(b)), . . .}

3.6 First-Order Tableau

The different versions of tableau for first-order logic differ in particular in the
treatment of variables by the tableau rules. The first variant I consider is stan-
dard first-order tableau where variables are instantiated by ground terms. For
this section, if not stated otherwise, all considered formulas are closed and do
not contain equations.

Definition 3.6.1 (γ-,δ-Formulas). A formula φ is called a γ-formula if φ is a
formula ∀xS .ψ or ¬∃xS .ψ. A formula φ is called a δ-formula if φ is a formula
∃xS .ψ or ¬∀xS .ψ.

Definition 3.6.2 (Direct Standard Tableau Descendant). Given a γ- or δ-
formula φ, Figure 3.1 shows its direct descendants.

As a proper extension to propositional tableau (Section 2.4) the first-order
tableau calculus operates on states that are sets of pairs of a sequence of formulas
and a set of constants. Semantically, the set of pairs represents a disjunction of
the respective sequences that are interpreted as conjunctions of the respective
formulas. The sets of constants is needed to ensure ground terms for all potential
γ-instantiations in the sequence.

A sequence of formulas (φ1, φ2, . . .) is called closed if there are two formulas
φi and φj in the sequence where φi = comp(φj). A state is closed if all its formula
sequences are closed. A state actually represents a tree and this tree is called a
tableau in the literature. So if a state is closed, the respective tree, the tableau is
closed too. Given a formula φ, the initial tableau for φ is {((¬φ), {c1, . . . , ck})}
where the ci are constants for each sort S such that φ contains a variable of sort
S but no ground term t in φ has sort S.

A first-order formula φ occurring in some sequence in N of a pair (M,J) is
called open if in case φ is an α-formula not both direct descendants are already
part of M , if it is a β-formula none of its descendants is part of M , if it is
a δ-formula no direct descendant is part of M , and if it is a γ-formula not
all direct descendants are part of M where only ground terms are considered

132 CHAPTER 3. FIRST-ORDER LOGIC

γ Descendant γ(t)
∀xS .ψ ψ{xS 7→ t}
¬∃xS .ψ ¬ψ{xS 7→ t}

for a ground term t ∈ TS(Σ)

δ Descendant δ(c)
∃xS .ψ ψ{xS 7→ c}
¬∀xS .ψ ¬ψ{xS 7→ c}

for a fresh constant c ∈ TS(Σ)

Figure 3.1: γ- and δ-Formulas

that can be built from constants J and function symbols in M such that their
depth is bounded by the maximal term depth occurring in M . In general, the
number of overall γ descendants of a tableau cannot be limited for a successful
tableau proof. A tableau can become infinite. This motivates the below notion
of saturation.

For the standard first-order tableau rules to make sense “enough” Skolem
constants (ground terms) are needed in the signature, e.g., countably infinitely
many for each sort. Then the tableau rules are

α-Expansion N]{((φ1, . . . , ψ, . . . , φn), J)} ⇒FT N]{((φ1, . . . , ψ, . . . , φn, ψ1, ψ2), J)}
provided ψ is an open α-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

β-Expansion N]{((φ1, . . . , ψ, . . . , φn), J)} ⇒FT N]{((φ1, . . . , ψ, . . . , φn, ψ1), J)}]
{((φ1, . . . , ψ, . . . , φn, ψ2), J)}
provided ψ is an open β-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

γ-Expansion N]{((φ1, . . . , ψ, . . . , φn), J)} ⇒FT N]{((φ1, . . . , ψ, . . . , φn, ψ
′), J)}

provided ψ is a γ-formula, ψ′ a γ(t) descendant where t is a ground term in the
signature of the sequence and J , the depth of t is bounded by the maximal term
depth in (φ1, . . . , ψ, . . . , φn) and the sequence is not closed.

δ-Expansion N]{((φ1, . . . , ψ, . . . , φn), J)} ⇒FT N]{(φ1, . . . , ψ, . . . , φn, ψ
′), J∪

{c})}
provided ψ is an open δ-formula, ψ′ a δ(c) descendant where c is a fresh constant
and the sequence is not closed.

where the α-, and β-expansion rules are copies of the propositional rules,
see Section 2.4, adjusted to the extended state format. The α-, and β-expansion

3.6. FIRST-ORDER TABLEAU 133

rules don’t manipulate the set of ground terms of a state. Note that for a par-
ticular γ-expansion the number of potential ground terms that can be used for
instantiation is always finite.

A possibly infinite tableau derivation s0 ⇒FT s1 ⇒FT . . . is called saturated
if for all its open sequences Mi of some pair (Mi, Ji) ∈ si and all formulas φ
occurring in Mi, there is an index j > i and some pair (Mj , Jj) ∈ sj , Mi is
a prefix of Mj , if in case φ is an α-formula then both direct descendants are
part of Mj , if it is a β-formula then one of its descendants is part of Mj , if it
is a δ-formula then one direct descendant is part of Mj , and if it is γ-formula
then all direct descendants from ground terms that can be built from function
symbols in Ji and Mi such that their depth is bounded by the maximal term
depth in Mi are part of the sequence Mj .

In general, the γ rule has to be applied several times to the same formula in
order to close a tableau. For instance, constructing a closed tableau from initial
state

{((∀xS .(P (xS)→ P (f(xS))), P (b), ¬P (f(f(b)))), ∅)}
is impossible without applying γ-Expansion twice to ∀xS .(P (xS)→ P (f(xS)))
on some branch, where b :→ S, f : S → S and P ⊆ S. Below is the derivation
of a closed tableau where I only show the added formulas and often abbreviate
the parent sequence with an indexed M .

{((∀xS .(P (xS)→ P (f(xS))), P (b), ¬P (f(f(b)))), ∅)
⇒γ

FT {((M1, P (b)→ P (f(b))), ∅)
⇒β

FT {((M2,¬P (b)), ∅), ((M2, P (f(b))), ∅)}
the sequence (M2,¬P (b)) is closed, so from now on omitted

⇒γ
FT {((M2, P (f(b)), P (f(b))→ P (f(f(b))))), ∅)}

⇒β
FT {((M3,¬P (f(b))), ∅), ((M3, P (f(f(b)))), ∅)}

now the tableau is closed

where M1 = (∀xS .(P (xS) → P (f(xS))), P (b), ¬P (f(f(b)))), M2 =
M1, (P (b) → P (f(b))) and M3 = M2, (P (f(b)), P (f(b)) → P (f(f(b)))). Note
that at any point of the derivation, the only ground terms to be used by γ-
Expansion are b, f(b), f(f(b)) because of the depth restriction, where the first
and second are needed in the derivation and instantiation with f(f(b)) produces
a tautology in the presence of ¬P (f(f(b)))). No extra constants are needed be-
cause the formula already contains a ground term of sort S.

Example 3.6.3 (Extra Constants). Consider the valid formula

φ = ¬(∀xS .∃yS .(R(xS , yS) ∨ P (b)) ∧ ∀xS , yS .¬R(xS , yS) ∧ ¬P (b))

where b :→ T , P ⊆ T , and R ⊆ S×S. The initial tableau, with double negation
removed is

{((∀xS .∃yS .(R(xS , yS) ∨ P (b)) ∧ ∀xS , yS .¬R(xS , yS) ∧ ¬P (b)), {c})}

where c :→ S.

134 CHAPTER 3. FIRST-ORDER LOGIC

{((comp(φ)), {c})}
⇒α,∗

FT {((comp(φ),∀xS .∃yS .(R(xS , yS) ∨ P (b)),∀xS , yS .¬R(xS , yS),¬P (b)), {c})
⇒γ

FT {((M1,∃yS .(R(c, yS) ∨ P (b))), {c})
⇒δ

FT {((M1,∃yS .(R(c, yS) ∨ P (b)), R(c, d) ∨ P (b)), {c, d})
where d :→ S is fresh

⇒β
FT {((M2, R(c, d)), {c, d}), ((M2, P (b)), {c, d})}

the sequence (M2, P (b)) is closed, so from now on omitted

⇒γ,∗
FT {((M2, R(c, d),∀yS .¬R(c, yS),¬R(c, d)), {c, d})

now the tableau is closed

Example 3.6.4 (Infinite Derivations). Consider the satisfiable formula

φ = ∀xS .(P (xS)→ P (f(xS))) ∧ P (a)

where a :→ S, P ⊆ S, and f : S → S. The tableau calculus does not terminate
on this formula:

{((∀xS .(P (xS)→ P (f(xS))) ∧ P (a)), ∅)}
⇒α

FT {((φ, ∀xS .(P (xS)→ P (f(xS))), P (a)), ∅)}
⇒γ

FT {((φ, ∀xS .(P (xS)→ P (f(xS))), P (a), P (a)→ P (f(a))), ∅)}
⇒β

FT {((M1,¬P (a)), ∅), ((M1, P (f(a))), ∅)}
the sequence (M1,¬P (a)) is closed, so from now on omitted

⇒γ
FT {((M1, P (f(a)), P (f(a))→ P (f(f(a))), ∅)}

. . .

The infinite branch computes the infinite Herbrand model P (f i(a)), see below.

Theorem 3.6.5 (Standard First-Order Tableau is Sound). If for a closed for-
mula φ the tableau calculus derives {((¬φ), J)} ⇒∗FT N and N is closed, then
φ is valid.

Proof. A branch of the tableau, i.e., the sequence out of a pair ((φ1, . . . , φn), J ′)
such that φj = comp(φi) for some i, j is unsatisfiable. If all tableau rules are
sound, i.e., preserve satisfiability, then if all branches are closed the formula
of the start state is unsatisfiable and its negation valid. So it remains to show
soundness for the tableau rules. For α- and β-Expansion this is already shown
in Theorem 2.4.4. It remains to show soundness of γ- and δ-Expansion.

γ-Expansion: let A be a model for (φ1, . . . , ψ, . . . , φn), i.e., A |= φ1∧ . . .∧ψ∧
. . .∧φn. In particular, A |= ψ where ψ = ∀xS .χ. So for any valuation β[xs 7→ a],
a ∈ SA it holds A, β[xs 7→ a] |= χ. Hence, A, β[xs 7→ tA] |= χ for any ground
term t of sort S and therefore A |= ψ′, for any γ(t) descendant ψ′. The case
ψ = ¬∃xS .χ can be shown analogously.

3.6. FIRST-ORDER TABLEAU 135

δ-Expansion: let A be a model for (φ1, . . . , ψ, . . . , φn), i.e., A |= φ1 ∧ . . . ∧
ψ ∧ . . . ∧ φn. In particular, A |= ψ where ψ = ∃xS .χ. So there is a valuation
β[xs 7→ a], for some a ∈ SA such that A, β[xs 7→ a] |= χ. Now construct an
interpretation A′ that is identical to A, except cA

′
= a for the fresh constant c

of the δ(c) descendant. The constant c does not occur in (φ1, . . . , ψ, . . . , φn), so
A′ |= φ1∧ . . .∧ψ∧ . . .∧φn and by construction A′ |= ψ′, for the δ(c) descendant
ψ′. The case ψ = ¬∀xS .χ can be shown analogously.

Completeness of a first-order calculus is more complicated than in propo-
sitional logic, because it requires the consideration of infinite derivations. For
the tableau calculus I prove that if a possibly infinite saturated derivation con-
tains an open branch, then this branch constitutes a model for the formulas in
the sequence. This idea is pretty old and goes back to Hintikka and Smullyan’s
completeness proof [38].

Definition 3.6.6 (Hintikka Set). Let M be a possibly infinite set of closed
first-order formulas such that for each variable xS occurring in M , there is at
least one ground term t of sort S occurring in M . M is a Hintikka set if for all
formulas φ ∈M :

1. if φ is a literal, then comp(φ) 6∈M

2. if φ is an α formula then α1 and α2 are in M

3. if φ is a β formula then β1 or β2 is in M

4. if φ is a γ formula then for all ground terms t of correct sort occurring in
M the formula γ(t) is in M

5. if φ is a δ formula then δ(c) is in M for some constant c

Lemma 3.6.7 (Hintikka’s Lemma). A Hintikka set is satisfiable.

Proof. Let M be a Hintikka set. I construct an algebra A out of M . For any sort
S I define SA = {t | t is a ground term of sort S in M}. By Definition 3.6.6 the
set SA is not empty. For any function symbol f : S1 × . . . × Sn → S I define
for all si ∈ SAi the function fA(s1, . . . , sn) = f(s1, . . . , sn) if f(s1, . . . , sn) ∈ SA
and fA(s1, . . . , sn) = s for some arbitrary ground term s ∈ SA otherwise. So,
functions are totally defined on their respective sorts. Predicates are interpreted
by PA = {(t1, . . . , tn) | P (t1, . . . , tn) ∈ M}. Note that if (t1, . . . , tn) ∈ PA for
some predicate P ⊆ S1 × . . . × Sn then ti ∈ SAi by construction. Then, by
structural induction, for any formula φ ∈M it holds A |= φ.

If φ is an atom A |= φ holds by construction. If φ is a negative literal
¬P (t1, . . . , tn) then because M is a Hintikka set P (t1, . . . , tn) 6∈ M and hence
A |= φ.

If φ is an α or β formula a simple application of the definition of a Hintikka
set together with the induction hypothesis proves A |= φ.

If φ is a γ formula ∀xS .φ′ (or ¬∃xS .φ′), then by definition of a Hintikka set
γ(t) is in M for all ground terms t of the correct sort occurring in M . Hence,

136 CHAPTER 3. FIRST-ORDER LOGIC

γ(t) ∈ M for all t ∈ SA. By induction hypothesis A |= γ(t) for all γ(t) and
hence A |= φ.

If φ is a δ formula then by definition of a Hintikka set δ(c) is in M for some
constant c. By induction hypothesis A |= δ(c) and hence A |= φ.

Lemma 3.6.8 (Open Branches of Saturated Tableaux constitute Hintikka Sets).
Let s0 ⇒FT s1 ⇒FT . . . be a saturated tableau derivation containing the deriva-
tion of an open branch (M1, J1) ⇒ (M2, J2) ⇒ . . . where Mi is always a strict
subsequence of Mi+1. Then M =

⋃
iMi is a Hintikka set.

Proof. Firstly, there is at least one ground term in M for each sort occurring
in M due to the construction of the initial state and the definition of the γ-
Expansion rule. By construction, all formulas in M are closed. It remains to
show the different conditions for a Hintikka set. Condition 1 of a Hintikka set
holds because the branch is open. Conditions 2, 3, 5 match exactly the condition
for the branch to be saturated. For condition 5 consider the state sj containing
the pair (Mj , Jj) of the branch where some arbitrary ground term t appears for
the first time in Mj . The γ-Expansion rules enables instantiation with t starting
with Mj , because t occurs in Mj . Then by the fact that the branch is saturated,
γ(t) ∈Mk for some k > j and hence γ(t) ∈M .

Now its time to prove completeness for standard first-order tableau. The
basic idea is, similar to superposition in the propositional and also first-order
case, Section 3.12. If a tableau cannot be closed there exists a model for some
branch.

Theorem 3.6.9 (Standard First-Order Tableau is Complete). If φ is valid then
the tableau calculus computes {((¬φ), J)} ⇒∗FT N and N is closed.

Proof. Proof by contradiction. Assume N is not closed. Therefore, it must con-
tain an open branch. By Lemma 3.6.8 this branch constitutes a Hintikka set.
By Lemma 3.6.7 the branch constitutes a model for ¬φ, hence φ cannot be
valid.

One of the disadvantages of the standard tableau calculus is the guessing of
ground terms in γ-Extensions. To get rid of this, the idea is to simply keep the
universally quantified variable. Then branches are no longer closed by syntac-
tically complementary formulas, but by complementary formulas modulo “ap-
propriate instantiation” of the universally quantified variables. This requires a
procedure that computes, in the simplest case, for two literals a substitution
that makes them complementary, i.e., the respective atoms equal. Searching for
a substitution making two terms, atoms (formulas) equal is called unification,
see Section 3.7.

Lemma 3.6.10 (Compactness of First-Order Logic). Let N be a, possibly
countably infinite, set of first-order logic ground clauses. Then N is unsatisfiable
iff there is a finite subset N ′ ⊆ N such that N ′ is unsatisfiable.

3.7. UNIFICATION 137

Proof. If N is unsatisfiable, saturation via the tableau calculus generates a
closed tableau. So there is an i such that N ⇒i

TAB N ′ and N ′ is closed. Every
closed branch is the result of finitely many tableau rule applications on finitely
many clauses {C1, . . . , Cn} ⊆ N . Let M be the union of all these finite clause
sets, so M ⊆ N . Tableau is sound, so M is a finite, unsatisfiable subset of N .

3.7 Unification

Definition 3.7.1 (Unifier). Two terms s and t of the same sort are said to
be unifiable if there exists a well-sorted substitution σ so that sσ = tσ, the
substitution σ is then called a well-sorted unifier of s and t. The unifier σ is
called most general unifier, written σ = mgu(s, t), if any other well-sorted unifier
τ of s and t it can be represented as τ = στ ′, for some well-sorted substitution
τ ′.

Obviously, two terms of different sort cannot be made equal by well-sorted
instantiation. Since well-sortedness is preserved by all rules of the unification
calculus, we assume from now an that all equations, terms, and substitutions
are well-sorted.

The first calculus is the naive standard unification calculus that is typically
found in the (old) literature on automated reasoning [14]. A state of the naive
standard unification calculus is a set of equations E or ⊥, where ⊥ denotes that
no unifier exists. The set E is also called a unification problem. The start state
for checking whether two terms s, t, sort(s) = sort(t), (or two non-equational
atoms A, B) are unifiable is the set E = {s = t} (E = {A = B}). A variable x
is solved in E if E = {x = t}] E′, x 6∈ vars(t) and x 6∈ vars(E).

A variable x ∈ vars(E) is called solved in E if E = E′] {x = t} and
x 6∈ vars(t) and x 6∈ vars(E′).

Tautology E] {t = t} ⇒SU E

Decomposition E] {f(s1, . . . , sn) = f(t1, . . . , tn)} ⇒SU E ∪ {s1 =
t1, . . . , sn = tn}

Clash E] {f(s1, . . . , sn) = g(s1, . . . , sm)} ⇒SU ⊥
if f 6= g

Substitution E] {x = t} ⇒SU E{x 7→ t} ∪ {x = t}
if x ∈ vars(E) and x 6∈ vars(t)

Occurs Check E] {x = t} ⇒SU ⊥
if x 6= t and x ∈ vars(t)

138 CHAPTER 3. FIRST-ORDER LOGIC

Orient E] {t = x} ⇒SU E ∪ {x = t}
if t 6∈ X

Theorem 3.7.2 (Soundness, Completeness and Termination of ⇒SU). If s, t
are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗SU E then any equation (s′ = t′) ∈ E is well-sorted, i.e.,
sort(s′) = sort(t′).

2. ⇒SU terminates on {s = t}.

3. if {s = t} ⇒∗SU E then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of
{s = t}.

4. if {s = t} ⇒∗SU ⊥ then s and t are not unifiable.

5. if {s = t} ⇒∗SU {x1 = t1, . . . , xn = tn} and this is a normal form, then
{x1 7→ t1, . . . , xn 7→ tn} is an mgu of s, t.

Proof. 1. by induction on the length of the derivation and a case analysis for
the different rules.
2. for a state E = {s1 = t1, . . . , sn = tn} take the measure µ(E) := (n,M, k)
where n is the number of unsolved variables, M the multiset of all term depths of
the si, ti and k the number of equations t = x in E where t is not a variable. The
state ⊥ is mapped to (0, ∅, 0). Then the lexicographic combination of > on the
naturals and its multiset extension shows that any rule application decrements
the measure.
3. by induction on the length of the derivation and a case analysis for the
different rules. Clearly, for any state where Clash, or Occurs Check generate ⊥
the respective equation is not unifiable.
4. a direct consequence of 3.
5. if E = {x1 = t1, . . . , xn = tn} is a normal form, then for all xi = ti we have
xi 6∈ vars(ti) and xi 6∈ vars(E \ {xi = ti}), so {x1 = t1, . . . , xn = tn}{x1 7→
t1, . . . , xn 7→ tn} = {t1 = t1, . . . , tn = tn} and hence {x1 7→ t1, . . . , xn 7→ tn} is
an mgu of {x1 = t1, . . . , xn = tn}. By 3. it is also an mgu of s, t.

Example 3.7.3 (Size of Standard Unification Problems). Any normal form of
the unification problem E given by
{f(x1, g(x1, x1), x3, . . . , g(xn, xn)) = f(g(x0, x0), x2, g(x2, x2), . . . , xn+1)}

with respect to ⇒SU is exponentially larger than E.

The second calculus, polynomial unification, prevents the problem of expo-
nential growth by introducing an implicit representation for the mgu. For this
calculus the size of a normal form is always polynomial in the size of the input
unification problem.

Tautology E] {t = t} ⇒PU E

3.7. UNIFICATION 139

Decomposition E] {f(s1, . . . , sn) = f(t1, . . . , tn)} ⇒PU E] {s1 =
t1, . . . , sn = tn}

Clash E] {f(t1, . . . , tn) = g(s1, . . . , sm)} ⇒PU ⊥
if f 6= g

Occurs Check E] {x = t} ⇒PU ⊥
if x 6= t and x ∈ vars(t)

Orient E] {t = x} ⇒PU E] {x = t}
if t 6∈ X

Substitution E] {x = y} ⇒PU E{x 7→ y}] {x = y}
if x ∈ vars(E) and x 6= y

Cycle E] {x1 = t1, . . . , xn = tn} ⇒PU ⊥
if there are positions pi with ti|pi = xi+1, tn|pn = x1 and some pi 6= ε

Merge E] {x = t, x = s} ⇒PU E] {x = t, t = s}
if t, s 6∈ X and |t| ≤ |s|

Theorem 3.7.4 (Soundness, Completeness and Termination of ⇒PU). If s, t
are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗PU E then any equation (s′ = t′) ∈ E is well-sorted, i.e.,
sort(s′) = sort(t′).

2. ⇒PU terminates on {s = t}.

3. if {s = t} ⇒∗PU E then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of
{s = t}.

4. if {s = t} ⇒∗PU ⊥ then s and t are not unifiable.

Theorem 3.7.5 (Normal Forms generated by ⇒PU). Let {s = t} ⇒∗PU {x1 =
t1, . . . , xn = tn} be a normal form. Then

1. xi 6= xj for all i 6= j and without loss of generality xi /∈ vars(ti+k) for all
i, k, 1 ≤ i < n, i+ k ≤ n.

2. the substitution {x1 7→ t1}{x2 7→ t2} . . . {xn 7→ tn} is an mgu of s = t.

Proof. 1. If xi = xj for some i 6= j then Merge is applicable. If xi ∈ vars(ti)
for some i then Occurs Check is applicable. If the xi cannot be ordered in the
described way, then either Substitution or Cycle is applicable.
2. Since xi /∈ vars(ti+k) the composition yields the mgu.

140 CHAPTER 3. FIRST-ORDER LOGIC

γ Descendant γ(y)
∀xS .ψ ψ{xS 7→ yS}
¬∃xS .ψ ¬ψ{xS 7→ yS}

for a fresh variable yS

δ Descendant δ(f(y1, . . . , yn))
∃xS .ψ ψ{xS 7→ f(y1, . . . , yn)}
¬∀xS .ψ ¬ψ{xS 7→ f(y1, . . . , yn)}

for some fresh Skolem function f,
f : sort(y1)× . . .× sort(yn)→ S

Figure 3.2: γ- and δ-Formulas

3.8 First-Order Free-Variable Tableau

An important disadvantage of standard first-order tableau is that the γ ground
term instances need to be guessed. The main complexity in proving a formula
to be valid lies in this guessing as for otherwise tableau terminates with a proof.
Guessing useless ground terms may result in infinite branches. A natural idea is
to guess ground terms that can eventually be used to close a branch. Of course,
it is not known which ground term will close a branch. Therefore, it would be
great to postpone the γ instantiations. This is the idea of free-variable first-order
tableau. Instead of guessing a ground term for a γ formula, free-variable tableau
introduces a fresh variable. Then a branch can be closed if two complementary
literals have a common ground instance, i.e., their atoms are unifiable. The
instantiation is delayed until a branch is closed for two literals via unification.
As a consequence, for δ formulas no longer constants are introduced but shallow,
so called Skolem terms in the formerly universally quantified variables that had
the δ formula in their scope.

The new calculus needs to keep track of scopes of variables, so I move from
a state as a set of pairs of a sequence and a set of constants, see standard first-
order tableau Section 3.6, to a set of sequences of pairs (Mi, Xi) where Xi is a
set of variables.

Definition 3.8.1 (Direct Free-Variable Tableau Descendant). Given a γ- or
δ-formula φ, Figure 3.2 shows its direct descendants.

The notion of closedness, Section 3.6, transfers exactly from standard to
free-variable tableau. For α- and β-formulas the definition of an open formula
remains unchanged as well. A γ- or δ-formula is called open in (M,X) if no direct
descendant is contained in M . Note that instantiation of a tableau may remove
direct descendants of γ- or δ-formulas by substituting terms for variables. Then
a branch, pair (M,X), sequence M , is open if it is not closed and there is an
open formula in M or there is pair of unifiable, complementary literals in M .

γ-Expansion N]{((φ1, . . . , ψ, . . . , φn), X)} ⇒FT N∪{((φ1, . . . , ψ, . . . , φn, ψ
′), X∪

3.8. FIRST-ORDER FREE-VARIABLE TABLEAU 141

{y})}
provided ψ is a γ-formula, ψ′ a γ(y) descendant where y is fresh to the overall
tableau and the sequence is not closed.

δ-Expansion N]{((φ1, . . . , ψ, . . . , φn), X)} ⇒FT N∪{(φ1, . . . , ψ, . . . , φn, ψ
′), X)}

provided ψ is an open δ-formula, X = {y1, . . . , yn}, ψ′ a δ(f(y1, . . . , yn)) de-
scendant where f is fresh to the sequence, and the sequence is not closed.

Branch-Closing N] {((φ1, . . . , φn), X)} ⇒FT (N ∪ {((φ1, . . . , φn), X)})σ
provided there are complementary literals φi and φj , atom(φi)σ = atom(φj)σ
for an mgu σ, and the sequence is not closed.

The first-order free-variable tableau calculus consists of the rules α-, and β-
expansion, see Section 3.6, which are adapted to pairs of sequences and variable
sets, and the above three rules γ-Expansion, δ-Expansion and Branch-Closing.
It remains to define the instantiation of a tableau by a substitution. As usual the
application of a substitution to a set means application to the elements. For a
pair ((φ1, . . . , φn), X) it is defined by ((φ1, . . . , φn), X)σ := ((φ1σ, . . . , φnσ), X \
dom(σ)).

For free-varianle tableau, the γ rule has to be applied several times to the
same formula as well in order to close a tableau, see the below example in
Section 3.6. Constructing a closed tableau from initial state

{((∀xS .(P (xS)→ P (f(xS))), P (b), ¬P (f(f(b)))), ∅)}

is impossible without applying γ-Expansion twice to ∀xS .(P (xS)→ P (f(xS)))
on some branch, where b :→ S, f : S → S and P ⊆ S. Below is the derivation
of a closed tableau where I only show the added formulas and often abbreviate
the parent sequence with an indexed M .

{((∀xS .(P (xS)→ P (f(xS))), P (b), ¬P (f(f(b)))), ∅)
⇒γ

FT {((M1, P (yS)→ P (f(yS))), {ys})
⇒β

FT {((M2,¬P (yS)), {ys}), ((M2, P (f(yS))), {ys})}
⇒Closing

FT {((M2σ,¬P (b)), ∅), ((M2σ, P (f(b))), ∅)}
the unifier is σ = {yS 7→ b}, of the literals ¬P (yS) and P (b)

⇒γ
FT {((M2σ, P (f(b)), P (f(zS))→ P (f(f(zS))))), {zS})}

⇒β
FT {((M3,¬P (f(zS))), {zS}), ((M3, P (f(f(zS)))), {zS})}

⇒Closing
FT {((M3δ,¬P (f(b))), ∅), ((M3δ, P (f(f(b)))), ∅)}

the unifier is δ = {zS 7→ f(b)}, of the literals ¬P (zS) and P (f(b))

now the tableau is closed

where M1 = (∀xS .(P (xS) → P (f(xS))), P (b), ¬P (f(f(b)))), M2 =
M1, (P (yS)→ P (f(yS))) and M3 = M2σ, (P (f(b)), P (f(zS))→ P (f(f(zS))).

142 CHAPTER 3. FIRST-ORDER LOGIC

A possibly infinite tableau derivation s0 ⇒FT s1 ⇒FT . . . is called saturated
if for all its open sequences Mi of some pair (Mi, Xi) ∈ si and all formulas φ
occurring in Mi, there is an index j > i and some pair (Mj , Xj) ∈ sj , Mi is a
prefix of Mj , if in case φ is an α-formula then both direct descendants are part
of Mj , if it is a β-formula then one of its descendants is part of Mj , if it is a δ-
or γ-formula then one direct descendant is part of Mj , and if Branch-Closing is
applicable to Mi then Mj is closed.

Theorem 3.8.2 (Free-variable First-Order Tableau is Sound and Complete).
A formula φ is valid iff free-variable tableau computes a closed state out of
{(¬φ, ∅)}.

Proof Idea: By lifting from standard first-order tableau.

Here is another example including δ-Expansion applications. I assume the
exsitence of exactly one sort with the respective defintions for the constants,
functions, variables, and predicates.

{((¬[∃w∀xR(x,w, f(x,w))→ ∃w∀x∃yR(x,w, y)]), ∅)
⇒α,∗

FT {((M1,∃w∀x R(x,w, f(x,w)),¬∃w∀x∃y R(x,w, y)), ∅)}
⇒δ

FT {((M2,∀x R(x, c, f(x, c))), ∅)}
⇒γ

FT {((M2,∀x R(x, c, f(x, c)),¬∀x∃y R(x, v1, y)), {v1})}
⇒δ

FT {((M2,∀x R(x, c, f(x, c)),¬∀x∃y R(x, v1, y),∀x R(x, c, f(x, c)),¬∃y R(g(v1), v1, y)), {v1})}
⇒γ

FT {((M3, R(v2, c, f(v2, c))), {v1, v2})}
⇒γ

FT {((M3, R(v2, c, f(v2, c)),¬R(g(v1), v1, v3)), {v1, v2, v3})}
⇒Closing

FT {((M3σ,R(g(c), c, f(g(c), c)),¬R(g(c), c, f(g(c), c))), ∅)}
the unifier is σ = {v1 7→ c, v2 7→ g(c), v3 7→ f(g(c), c)}
now the tableau is closed

where M1 = ¬[∃w∀xR(x,w, f(x,w))→ ∃w∀x∃yR(x,w, y)],
M2 = M1,∃w∀x R(x,w, f(x,w)),¬∃w∀x∃y R(x,w, y), and
M3 = M2,∀x R(x, c, f(x, c)),¬∀x∃y R(x, v1, y),∀x R(x, c, f(x, c)),¬∃y R(g(v1), v1, y).

Semantic Tableau vs. Resolution

1. Tableau: global, goal-oriented, “backward”.

2. Resolution: local, “forward”.

3. Goal-orientation is a clear advantage if only a small subset of a large set
of formulas is necessary for a proof. (Note that resolution provers saturate
also those parts of the clause set that are irrelevant for proving the goal.)

4. Resolution can be combined with more powerful redundancy elimination
methods; because of its global nature this is more difficult for the tableau
method.

