
Chapter 3

First-Order Logi

First-Order logi is a generalization of propositional logi. Propositional logi

an represent propositions, whereas �rst-order logi an represent individuals

and propositions about individuals. For example, in propositional logi from

\Sorates is a man" and \If Sorates is a man then Sorates is mortal" the

onlusion \Sorates is mortal" an be drawn. In �rst-order logi this an be

represented muh more �ne-grained. From \Sorates is a man" and \All man

are mortal" the onlusion \Sorates is mortal" an be drawn.

This hapter introdues �rst-order logi with equality. However, all aluli

presented here, namely Tableaux (Setion 3.6) and Superposition (Setion ??)

are presented only for its restrition without equality. Purely equational logi

and �rst-order logi with equality are presented separately in Chapter ?? and

Chapter ??, respetively.

3.1 Syntax

De�nition 3.1.1 (Many-Sorted Signature). A many-sorted signature � =

(S;
;�) is a pair onsisting of a �nite non-empty set S of sort symbols, a

non-empty set
 of operator symbols (also alled funtion symbols) over S and

a set � of prediate symbols. Every operator symbol f 2
 has a unique sort

delaration f : S

1

� : : :�S

n

! S, indiating the sorts of arguments (also alled

domain sorts) and the range sort of f , respetively, for some S

1

; : : : ; S

n

; S 2 S

where n � 0 is alled the arity of f , also denoted with arity(f). An operator

symbol f 2
 with arity 0 is alled a onstant. Every prediate symbol P 2 �

has a unique sort delaration P � S

1

� : : : � S

n

. A prediate symbol P 2 �

with arity 0 is alled a propositional variable. For every sort S 2 S there must

be at least one onstant a 2
 with range sort S.

In addition to the signature �, a variable set X , disjoint from
 is assumed, so

that for every sort S 2 S there exists a ountably in�nite subset of X onsisting

of variables of the sort S. A variable x of sort S is denoted by x

S

.

De�nition 3.1.2 (Term). Given a signature � = (S;
;�), a sort S 2 S and

93

94 CHAPTER 3. FIRST-ORDER LOGIC

a variable set X , the set T

S

(�;X) of all terms of sort S is reursively de�ned

by (i) x

S

2 T

S

(�;X) if x

S

2 X , (ii) f(t

1

; : : : ; t

n

) 2 T

S

(�;X) if f 2
 and

f : S

1

� : : :� S

n

! S and t

i

2 T

S

i

(�;X) for every i 2 f1; : : : ; ng.

The sort of a term t is denoted by sort(t), i.e., if t 2 T

S

(�;X) then sort(t) =

S. A term not ontaining a variable is alled ground.

For the sake of simpliity it is often written: T (�;X) for

S

S2S

T

S

(�;X), the

set of all terms, T

S

(�) for the set of all ground terms of sort S 2 S, and T (�)

for

S

S2S

T

S

(�), the set of all ground terms over �.

De�nition 3.1.3 (Equation, Atom, Literal). If s; t 2 T

S

(�;X) then s � t is an

equation over the signature �. Any equation is an atom (also alled atomi for-

mula) as well as every P (t

1

; : : : ; t

n

) where t

i

2 T

S

i

(�;X) for every i 2 f1; : : : ; ng

and P 2 �, arity(P) = n, P � S

1

� : : : � S

n

. An atom or its negation of an

atom is alled a literal.

The literal s

.

� t denotes either s � t or t � s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal :(s � t) is written

as s 6� t.

C

Non equational atoms an be transformed into equations: For this a

given signature is extended for every prediate symbol P as follows:

(i) add a distint sort B to S, (ii) introdue a fresh onstant true of

the sort B to
, (iii) for every prediate P , P � S

1

� : : : � S

n

add a fresh

funtion f

P

: S

1

; : : : ; S

n

! B to
, and (iv) enode every atom P (t

1

; : : : ; t

n

) as

a funtion f

P

: S

1

; : : : ; S

n

! B. Thus, prediate atoms are turned into equations

f

P

(t

1

; : : : ; t

n

) � true. are overloaded here.

De�nition 3.1.4 (Formulas). The set FOL(�;X) of many-sorted �rst-order

formulas with equality over the signature � is de�ned as follows for formulas

�; 2 F

�

(X) and a variable x 2 X :

FOL(�;X) Comment

? falsum

> verum

P (t

1

; : : : ; t

n

); s � t atom

(:�) negation

(� ^) onjuntion

(� _) disjuntion

(�!) impliation

(�$) equivalene

8x:� universal quanti�ation

9x:� existential quanti�ation

A onsequene of the above de�nition is that PROP(�) � FOL(�

0

;X) if

the propositional variables of � are ontained in �

0

as prediates of arity 0. A

formula not ontaining a quanti�er is alled quanti�er-free.

3.1. SYNTAX 95

De�nition 3.1.5 (Positions). It follows from the de�nitions of terms and for-

mulas that they have tree-like struture. For referring to a ertain subtree,

alled subterm or subformula, respetively, sequenes of natural numbers are

used, alled positions (as introdued in Chapter 2.1.3). The set of positions of

a term, formula is indutively de�ned by:

pos(x) := f�g if x 2 X

pos(�) := f�g if � 2 f>;?g

pos(:�) := f�g [f1p j p 2 pos(�)g

pos(� Æ) := f�g [f1p j p 2 pos(�)g [f2p j p 2 pos()g

pos(s � t) := f�g [f1p j p 2 pos(s)g [f2p j p 2 pos(t)g

pos(f(t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(P (t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(8x:�) := f�g [f1p j p 2 pos(�)g

pos(9x:�) := f�g [f1p j p 2 pos(�)g

where Æ 2 f^;_;!;$g and t

i

2 T (�;X) for all i 2 f1; : : : ; ng.

The pre�x orders (above, stritly above and parallel), the seletion and re-

plaement with respet to positions are de�ned exatly as in Chapter 2.1.3.

An term t (formula �) is said to ontain another term s (formula) if t

p

= s

(�

p

=). It is alled a strit subexpression if p 6= �. The term t (formula �)

is alled an immediate subexpression of s (formula) if jpj = 1. For terms a

subexpression is alled a subterm and for formulas a subformula, respetively.

The size of a term t (formula �), written jtj (j�j), is the ardinality of pos(t),

i.e., jtj := j pos(t)j (j�j := j pos(�)j). The depth of a term, formula is the maximal

length of a position in the term, formula: depth(t) := maxfjpj j p 2 pos(t)g

(depth(�) := maxfjpj j p 2 pos(�)g). The set of all variables ourring in a

term t (formula �) is denoted by vars(t) (vars(phi)) and formally de�ned as

vars(t) := fx 2 X j x = tj

p

; p 2 pos(t)g (vars(�) := fx 2 X j x = �j

p

; p 2

pos(�)g). A term t (formula �) is ground if vars(t) = ; (vars(�) = ;).

Note that vars(8x:a � b) = ; where a; b are onstants. This is justi�ed by the

fat that the formula does not depend on the quanti�er, see semantis below. The

set of free variables of a formula � (term t) is given by fvars(�; ;) (fvars(t; ;)) and

reursively de�ned by fvars(

1

Æ

2

; B) := fvars(

1

; B)[fvars(

2

; B) where Æ 2

f^;_;!;$g, fvars(8x: ;B) := fvars(;B[fxg), fvars(9x: ;B) := fvars(;B[

fxg), fvars(: ;B) := fvars(;B), fvars(L;B) := vars() n B (fvars(t; B) :=

vars(t) nB. For fvars(�; ;) I also write fvars(�)

In 8x:� (9x:�) the formula � is alled the sope of the quanti�er. An o-

urrene q of a variable x in a formula � (�j

q

= x) is alled bound if there is

some p < q with �j

p

= 8x:�

0

or �j

p

= 9x:�

0

. Any other ourrene of a vari-

able is alled free. A formula not ontaining a free ourrene of a variable is

alled losed. If fx

1

; : : : ; x

n

g are the variables freely ourring in a formula

� then 8x

1

; : : : ; x

n

:� and 9x

1

; : : : ; x

n

:� (abbreviations for 8x

1

:8x

2

: : :8x

n

:�,

9x

1

:8x

2

: : :8x

n

:�, respetively) are the universal and the existential losure of

�.

96 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.1.6. For the literal :P (f(x; g(a))) the atom P (f(x; g(a))) is an

immediate subformula of ourring at position 1. The terms x and g(a) are

strit subterms ourring at positions 111 and 112, respetively. The for-

mula :P (f(x; g(a)))[b℄

111

= :P (f(b; g(a))) is obtained by replaing x with b.

pos(:P (f(x; g(a)))) = f�; 1; 11; 111; 112; 1121gmeaning its size is 6, its depth 4

and vars(:P (f(x; g(a)))) = fxg.

The polarity of a subformula = �j

p

at position p is pol(�; p) where pol is

reursively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

pol(P (t

1

; : : : ; t

n

); p) := 1

pol(t � s; p) := 1

pol(8x:�; 1p) := pol(�; p)

pol(9x:�; 1p) := pol(�; p)

3.2 Semantis

De�nition 3.2.1 (�-algebra). Let � = (S;
;�) be a signature with set of

sorts S, operator set
 and prediate set �. A �-algebra A, also alled �-

interpretation, is a mapping that assigns (i) a non-empty arrier set S

A

to every

sort S 2 S, so that (S

1

)

A

\(S

2

)

A

= ; for any distint sorts S

1

; S

2

2 S, (ii) a total

funtion f

A

: (S

1

)

A

� : : :�(S

n

)

A

! (S)

A

to every operator f 2
, arity(f) = n

where f : S

1

� : : : � S

n

! S, (iii) a relation P

A

� ((S

1

)

A

� : : : � (S

m

)

A

) to

every prediate symbol P 2 �, arity(P) = m. (iv) the equality relation beomes

�

A

= f(e; e) j e 2 U

A

g where the set U

A

:=

S

S2S

(S)

A

is alled the universe of

A.

A (variable) assignment, also alled a valuation for an algebraA is a funtion

� : X ! U

A

so that �(x) 2 S

A

for every variable x 2 X , where S = sort(x). A

modi�ation �[x 7! e℄ of an assignment � at a variable x 2 X , where e 2 S

A

and S = sort(x), is the assignment de�ned as follows:

�[x 7! e℄(y) =

(

e if x = y

�(y) otherwise.

Informally speaking, the assignment �[x 7! e℄ is idential to � for every variable

exept x, whih is mapped by �[x 7! e℄ to e.

The homomorphi extension A(�) of � onto terms is a mapping T (�;X)!

U

A

de�ned as (i) A(�)(x) = �(x), where x 2 X and (ii) A(�)(f(t

1

; : : : ; t

n

)) =

f

A

(A(�)(t

1

); : : : ;A(�)(t

n

)), where f 2
, arity(f) = n.

3.2. SEMANTICS 97

Given a term t 2 T (�;X), the value A(�)(t) is alled the interpretation of

t under A and �. If the term t is ground, the value A(�)(t) does not depend

on a partiular hoie of �, for whih reason the interpretation of t under A is

denoted by A(t).

An algebra A is alled term-generated, if every element e of the universe U

A

of A is the image of some ground term t, i.e., A(t) = e.

De�nition 3.2.2 (Semantis). An algebra A and an assignment � are extended

to formulas � 2 FOL(�;X) by

A(�)(?) := 0

A(�)(>) := 1

A(�)(s � t) := 1 if A(�)(s) = A(�)(t) and 0 otherwise

A(�)(P (t

1

; : : : ; t

n

)) := 1 if (A(�)(t

1

); : : : ;A(�)(t

n

)) 2 P

A

and 0 otherwise

A(�)(:�) := 1�A(�)(�)

A(�)(� ^) := min(fA(�)(�);A(�)()g)

A(�)(� _) := max(fA(�)(�);A(�)()g)

A(�)(� !) := max(f(1�A(�)(�));A(�)()g)

A(�)(� $) := if A(�)(�) = A(�)() then 1 else 0

A(�)(9x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for some e 2 S

A

and 0 otherwise

A(�)(8x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for all e 2 S

A

and 0 otherwise

A formula � is alled satis�able by A under � (or valid in A under �) if

A; � j= �; in this ase, � is also alled onsistent ; satis�able by A if A; � j= �

for some assignment �; satis�able if A; � j= � for some algebra A and some

assignment �; valid in A, written A j= �, if A; � j= � for any assignment �; in

this ase, A is alled a model of �; valid, written j= �, if A; � j= � for any algebra

A and any assignment �; in this ase, � is also alled a tautology ; unsatis�able

if A; � 6j= � for any algebra A and any assignment �; in this ase � is also alled

inonsistent.

Note that ? is inonsistent whereas > is valid. If � is a sentene that is

a formula not ontaining a free variable, it is valid in A if and only if it is

satis�able by A. This means the truth of a sentene does not depend on the

hoie of an assignment.

Given two formulas � and , � entails , or is a onsequene of �, written

� j= , if for any algebra A and assignment �, if A; � j= � then A; � j= . The

formulas � and are alled equivalent, written � j=j , if � j= and j= �. Two

formulas � and are alled equisatis�able, if � is satis�able i� is satis�able (not

neessarily in the same models). Note that if � and are equivalent then they

are equisatis�able, but not the other way around. The notions of \entailment",

\equivalene" and \equisatis�ability" are naturally extended to sets of formulas,

that are treated as onjuntions of single formulas. Thus, given formula setsM

1

and M

2

, the set M

1

entails M

2

, written M

1

j= M

2

, if for any algebra A and

assignment �, if A; � j= � for every � 2M

1

then A; � j= for every 2M

2

. The

sets M

1

and M

2

are equivalent, written M

1

j=jM

2

, if M

1

j=M

2

and M

2

j=M

1

.

Given an arbitrary formula � and formula set M , M j= � is written to denote

M j= f�g; analogously, � j=M stands for f�g j=M .

98 CHAPTER 3. FIRST-ORDER LOGIC

Sine lauses are impliitly universally quanti�ed disjuntions of literals, a

lause C is satis�able by an algebra A if for every assignment � there is a literal

L 2 C with A; � j= L. Note that if C = fL

1

; : : : ; L

k

g is a ground lause, i.e.,

every L

i

is a ground literal, then A j= C if and only if there is a literal L

j

in C

so that A j= L

j

. A lause set N is satis�able i� all lauses C 2 N are satis�able

by the same algebra A. Aordingly, if N and M are two lause sets, N j= M

i� every model A of N is also a model of M .

3.3 Equality

The equality prediate is build into the �rst-order language in Setion 3.1 and

not part of the signature. It is a �rst lass itizen. This is the ase although

it an be atually axiomatized in the language. The motivation is that �rstly,

many real world problems naturally ontain equations. They are a means to

de�ne funtions. Then prediates over terms model properties of the funtions.

Seondly, without speial treatment in a alulus, it is almost impossible to

automatially prove non-trivial properties of a formula ontaining equations.

In this setion I �rstly show that any formula an be transformed into a

formula where all atoms are equations. Seondly, that any formula ontaining

equations an be transformed into a formula where the equality prediate is

replaed by a fresh prediate together with some axioms. In the �rst ase the

respetive lause sets are equivalent, in the seond ase the transformation is

satis�ability preserving. For the replaement of any prediate R by equations

over a fresh funtion f

R

we assume an additional fresh sort Bool with two fresh

onstants true and false.

InjEq �[R(t

1;1

; : : : ; t

1;n

)℄

p

1

: : : [R(t

m;1

; : : : ; t

m;n

)℄

p

m

)

IE

�[f

R

(t

1;1

; : : : ; t

1;n

) �

true℄

p

1

: : : [f

R

(t

m;1

; : : : ; t

m;n

) � true℄

p

m

provided R is a prediate ourring in �, fp

1

; : : : ; p

m

g are all positions of atoms

with prediate R in � and f

R

is new with appropriate sorting

Proposition 3.3.1. Let �)

�

IE

�

0

then � is satis�able (valid) i� �

0

is satis�able

(valid).

Proof. (Sketh) The basi proof idea is to establish the relation (t

A

1

; : : : ; t

A

n

) 2

R

A

i� f

A

R

(t

A

1

; : : : ; t

A

n

) = true

A

. Furthermore, the sort of true is fresh to � and

the equations f

R

(t

1

; : : : ; t

n

) � true do not interfere with any term t

i

beause

the f

R

are all fresh and only our on top level of the equations.

When removing equality from a formula it needs to be axiomatized. For

simpliity, I assume here that the onsidered formula � is one-sorted, i.e., there

is only one sort ourring for funtions, relations in �. The extension to formulas

with many sorts is straightforward and disussed below.

RemEq �[l

1

� r

1

℄

p

1

: : : [l

m

� r

m

℄

p

m

)

RE

�[E(l

1

; r

1

)℄

p

1

: : : [E(l

m

; r

m

)℄

p

m

^

def(�;E)

3.4. SUBSTITUTION AND UNIFIER 99

provided fp

1

; : : : ; p

m

g are all positions of equations l

i

= r

i

in � and E is a new

binary prediate

The formula def(�;E) is the axiomatization of equality for � and it onsists

of a onjuntion of the equivalene relation axioms for E

8x:E(x; x)

8x; y:(E(x; y)! E(y; x))

8x; y; z:((E(x; y) ^ E(x; z))! E(x; z))

plus the ongruene axioms for E for every n-ary funtion symbol f

8x

1

; y

1

; : : : ; x

n

; y

n

:((E(x

1

; y

1

) ^ : : : ^E(x

n

; y

n

))! E(f(x

1

; : : : ; x

n

); f(y

1

; : : : ; y

n

)))

plus the ongruene axioms for E for every m-ary prediate symbol P

8x

1

; y

1

; : : : ; x

m

; y

m

:((E(x

1

; y

1

) ^ : : : ^ E(x

m

; y

m

) ^ P (x

1

; : : : ; x

m

))! P (y

1

; : : : ; y

m

)

Proposition 3.3.2. Let �)

RE

�

0

then � is satis�able i� �

0

is satis�able.

Proof. (Sketh) The identity on an algebra (see De�nition 3.2.2) is a ongruene

relation proving the diretion from left to right. The diretion from right to left

is more involved.

Note that)

RE

is not validity preserving. Consider the simple example for-

mula a � a whih is valid for any onstant a. Its translation E(a; a) ^ def(a �

a;E) is not valid, e.g., onsider an algebra with E

A

= ;.

Now in ase � has many di�erent sorts then for eah sort S one new fresh

prediate E

S

is needed for the translation. For eah of these prediates equiv-

alene relation and ongruene axioms need to be generated where for every

funtion f only one axiom using E

S

is needed, where S is the range sort of S.

Similar for the domain sorts of f and aordingly for prediates.

3.4 Substitution and Uni�er

De�nition 3.4.1 (Substitution). A substitution is a mapping � : X ! T (�;X)

so that

1. �(x) 6= x for only �nitely many variables x and

2. sort(x) = sort(t) for every variable x 2 X that is mapped to a term

t 2 T

S

(�;X).

The appliation �(x) of a substitution � to a variable x is often written in

post�x notation as x�. The variable set dom(�) := fx 2 X j x� 6= xg is alled

the domain of �. The term set odom(�) := fx� j x 2 dom(�)g is alled the

odomain of �. From the above de�nition of substitution it follows that dom(�)

is �nite for any substitution �. The omposition of two substitutions � and �

is written as a juxtaposition �� , i.e., t�� = (t�)� . A substitution � is alled

idempotent if �� = �. � is idempotent i� dom(�) \ vars(odom(�)) = ;.

Substitutions are often written as fx

1

7! t

1

; : : : ; x

n

7! t

n

g if dom(�) =

fx

1

; : : : ; x

n

g and x

i

� = t

i

for every i 2 f1; : : : ; ng. The modi�ationof a substi-

tution � at a variable x is de�ned as follows:

100 CHAPTER 3. FIRST-ORDER LOGIC

�[x 7! t℄(y) =

�

t if y = x

�(y) otherwise

A substitution � is identi�ed with its extension to expression and de�ned as

following:

1. ?� = ?,

2. >� = >,

3. (f(t

1

; : : : ; t

n

))� = f(t

1

�; : : : ; t

n

�),

4. (P (t

1

; : : : ; t

n

))� = P (t

1

�; : : : ; t

n

�),

5. (s � t)� = (s� � t�),

6. (:�)� = :(��),

7. (� Æ)� = �� Æ � where Æ 2 f_;^g,

8. (Qx�)� = Qz(��[x 7! z℄) where Q 2 f8; 9g, z and x are of the same sort

and z is a fresh variable.

The result e� of applying a substitution � to an expression e is alled an

instane of e. The substitution � is alled ground if it maps every domain

variable to a ground term. If the appliation of a substitution � to an expression

e produes a ground expression e� then e� is alled ground instane of e. A

ground substitution � is alled grounding for an expression e if e� is ground. A

substitution � is alled variable renaming if im(�) � X and for any x; y 2 X , if

x 6= y then x� 6= y�.

De�nition 3.4.2 (Uni�er). Two terms s and t are said to be uni�able if there

exists a substitution � so that s� = t�, the substitution � is then alled a uni�er

of s and t. The uni�er � is alled most general uni�er, written � = mgu(s; t), if

any other uni�er � of s and t an be represented as � = ��

0

, for some substitution

�

0

.

3.5 Uni�ation Caluli

The �rst alulus is the naive standard uni�ation alulus that is typially

found in the (old) literature on automated reasoning. A state of the naive stan-

dard uni�ation alulus is a set of equations E or ?, where ? denotes that

no uni�er exists. The set E is also alled a uni�ation problem. The start state

for heking whether two terms s, t with sort(s) = sort(t) (or atoms A, B) are

uni�able is the set E = fs = tg. A variable x is solved in E if E = fx = tg℄E

0

,

x 62 vars(t) and x 62 vars(E).

Tautology E ℄ ft = tg)

SU

E

3.5. UNIFICATION CALCULI 101

Deomposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g)

SU

E [fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(s

1

; : : : ; s

n

) = g(s

1

; : : : ; s

m

)g)

SU

?

if f 6= g

Substitution

E ℄ fx = tg)

SU

Efx 7! tg [fx = tg

if x 2 vars(E) and x 62 vars(t)

Ours Chek

E ℄ fx = tg)

SU

?

if x 6= t and x 2 vars(t)

Orient

E ℄ ft = xg)

SU

E [fx = tg

if t 62 X

Theorem 3.5.1 (Soundness, Completeness and Termination of)

SU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg)

�

SU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2.)

SU

terminates on fs = tg.

3. if fs = tg)

�

SU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg)

�

SU

? then s and t are not uni�able.

5. if fs = tg)

�

SU

fx

1

= t

1

; : : : ; x

n

= t

n

g and this is a normal form, then

fx

1

7! t

1

; : : : ; x

n

7! t

n

g is an mgu of s, t.

Proof. 1. by indution on the length of the derivation and a ase analysis for

the di�erent rules.

2. for a state E = fs

1

= t

1

; : : : ; s

n

= t

n

g take the measure �(E) := (n;M; k)

where n is the number of unsolved variables,M the multiset of all term depths of

the s

i

, t

i

and k the number of equations t = x in E where t is not a variable. The

state ? is mapped to (0; ;; 0). Then the lexiographi ombination of > on the

naturals and its multiset extension shows that any rule appliation derements

the measure.

3. by indution on the length of the derivation and a ase analysis for the

di�erent rules. Clearly, for any state where Clash, or Ours Chek generate ?

the respetive equation is not uni�able.

4. a diret onsequene of 3.

5. if E = fx

1

= t

1

; : : : ; x

n

= t

n

g is a normal form, then for all x

i

= t

i

we have

x

i

62 vars(t

i

) and x

i

62 vars(E n fx

i

= t

i

g), so fx

1

= t

1

; : : : ; x

n

= t

n

gfx

1

7!

t

1

; : : : ; x

n

7! t

n

g = ft

1

= t

1

; : : : ; t

n

= t

n

g and hene fx

1

7! t

1

; : : : ; x

n

7! t

n

g is

an mgu of fx

1

= t

1

; : : : ; x

n

= t

n

g. By 3. it is also an mgu of s, t.

102 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.5.2 (Size of Standard Uni�ation Problems). Any normal form of

the uni�ation problem E given by

ff(x

1

; g(x

1

; x

1

); x

3

; : : : ; g(x

n

; x

n

)) = f(g(x

0

; x

0

); x

2

; g(x

2

; x

2

); : : : ; x

n+1

)g

with respet to)

SU

is exponentially larger than E.

The seond alulus, polynomial uni�ation, prevents the problem of expo-

nential growth by introduing an impliit representation for the mgu. For this

alulus the size of a normal form is always polynomial in the size of the input

uni�ation problem.

Tautology E ℄ ft = tg)

PU

E

Deomposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g)

PU

E ℄ fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(t

1

; : : : ; t

n

) = g(s

1

; : : : ; s

m

)g)

PU

?

if f 6= g

Ours Chek

E ℄ fx = tg)

PU

?

if x 6= t and x 2 vars(t)

Orientation

E ℄ ft = xg)

PU

E ℄ fx = tg

if t 62 X

Substitution

E ℄ fx = yg)

PU

Efx 7! yg ℄ fx = yg

if x 2 vars(E) and x 6= y

Cyle E ℄ fx

1

= t

1

; : : : ; x

n

= t

n

g)

PU

?

if there are positions p

i

with t

i

j

p

i

= x

i+1

; t

n

j

p

n

= x

1

and some p

i

6= �

Merge E ℄ fx = t; x = sg)

PU

E ℄ fx = t; t = sg

if t; s 62 X and jtj � jsj

Theorem 3.5.3 (Soundness, Completeness and Termination of)

PU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg)

�

PU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2.)

PU

terminates on fs = tg.

3. if fs = tg)

�

PU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg)

�

PU

? then s and t are not uni�able.

Theorem 3.5.4 (Uni�er generated by)

PU

). Let fs = tg)

�

PU

fx

1

=

t

1

; : : : ; x

n

= t

n

g. Then

3.6. FIRST-ORDER TABLEAUX 103

 Desendant (t)

8x

S

: fx

S

7! tg

:9x

S

: : fx

S

7! tg

for any ground term t 2 T

S

(�)

Æ Desendant Æ()

9x

S

: fx

S

7! g

:8x

S

: : fx

S

7! g

for some fresh Skolem onstant 2 T

S

(�)

Figure 3.1: - and Æ-Formulas

1. x

i

6= x

j

for all i 6= j and without loss of generality x

i

=2 vars(t

i+k

) for all

i; k, 1 � i < n, i+ k � n.

2. the substitution fx

1

7! t

1

gfx

2

7! t

2

g : : : fx

n

7! t

n

g is an mgu of s = t.

Proof. 1. If x

i

= x

j

for some i 6= j then Merge is appliable. If x

i

2 vars(t

i

)

for some i then Ours Chek is appliable. If the x

i

annot be ordered in the

desribed way, then either Substitution or Cyle is appliable.

2. Sine x

i

=2 vars(t

i+k

the omposition yields the mgu.

3.6 First-Order Tableaux

The di�erent versions of tableaux for �rst-order logi di�er in partiular in the

treatment of variables by the tableaux rules. The �rst variant is standard �rst-

order tableaux where variables are instantiated by ground terms.

De�nition 3.6.1 (-,Æ-Formulas). A formula � is alled a -formula if � is a

formula 8x

S

: or :9x

S

: . A formula � is alled a Æ-formula if � is a formula

9x

S

: or :8x

S

: .

De�nition 3.6.2 (Diret Standard Tableaux Desendant). Given a - or Æ-

formula �, Figure 3.1 shows its diret desendants.

For the standard �rst-order tableaux rules to make sense \enough" Skolem

onstants are needed in the signature, e.g., ountably in�nitely many for eah

sort. A Æ formula � ourring in some sequene is alled open if no diret de-

sendant of it is part of the sequene. In general, the number of desendants

annot be limited for a suessful tableaux proof.

-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

FT

N℄f(�

1

; : : : ; ; : : : ; �

n

;

0

)g

provided is a -formula,

0

a (t) desendant where t is an arbitrary ground

term in the signature of the sequene (branh) and the sequene is not losed.

Æ-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

FT

N℄f(�

1

; : : : ; ; : : : ; �

n

;

0

)g

104 CHAPTER 3. FIRST-ORDER LOGIC

provided is an open Æ-formula,

0

a Æ() desendant where is fresh to the

sequene and the sequene is not losed.

The standard �rst-order tableaux alulus onsists of the rules �-, and

�-expansion (see Setion 2.4) and the above two rules -Expansion and Æ-

Expansion.

Theorem 3.6.3 (Standard First-Order Tableaux is Sound and Complete). A

formula � (without equality) is valid i� standard tableaux omputes a losed

state out of f(:�)g.

Skolem onstants are suÆient: In a Æ-formula 9x�, 9 is the outermost quan-

ti�er and x is the only free variable in �. The rule has to be applied several

times to the same formula for tableaux to be omplete. For instane, onstrut-

ing a losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying -expansion twie on one path.

The main disadvantage of standard �rst-order tableau is that the ground

term instanes need to be guessed. The whole omplexity of the problem lies in

this guessing as for otherwise tableaux terminates. A natural idea is to guess

ground terms that an eventually be used to lose a branh. This is the idea

of free-variable �rst-order tableaux. Instead of guessing a ground term for a

 formula the variable remains, the instantiation is delayed until a branh is

losed for two literals via uni�ation. As a onsequene, for Æ formulas no longer

onstants are introdued but Skolem terms in the formerly universally quanti�ed

variables that had the Æ formula in their sope.

The new alulus suggests to keep trak of sopes of variables, so I move

from a state as a set of sequenes of formulas to a set of sequenes of pairs

l

i

= (�

i

; X

i

) where X

i

is a set of variables.

De�nition 3.6.4 (Diret Free-Variable Tableaux Desendant). Given a - or

Æ-formula �, Figure 3.2 shows its diret desendants.

-Expansion N℄f(l

1

; : : : ; (;X); : : : ; l

n

)g)

FT

N℄f(l

1

; : : : ; (;X); : : : ; l

n

; (

0

; X[

fyg))g

provided is a -formula,

0

a (y) desendant where y is fresh to the sequene

(branh) and the sequene is not losed.

Æ-Expansion N℄f(l

1

; : : : ; (;X); : : : ; l

n

)g)

FT

N℄f(l

1

; : : : ; (;X); : : : ; l

n

; (

0

; X))g

provided is an open Æ-formula,

0

a Æ(f(y

1

; : : : ; y

n

)) desendant where f is

fresh to the sequene, X = fy

1

; : : : ; y

n

g and the sequene is not losed.

Branh-Closing N ℄ f(l

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; l

n

)g)

FT

N� ℄

f(�

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; �

n

; g�

3.6. FIRST-ORDER TABLEAUX 105

 Desendant (y)

8x

S

: fx

S

7! yg

:9x

S

: : fx

S

7! yg

for a fresh variable y; sort(y) = S

Æ Desendant Æ(f(y

1

; : : : ; y

n

))

9x

S

: fx

S

7! f(y

1

; : : : ; y

n

)g

:8x

S

: : fx

S

7! f(y

1

; : : : ; y

n

)g

for some fresh Skolem funtion f

where f(y

1

; : : : ; y

n

) 2 T

S

(�)

Figure 3.2: - and Æ-Formulas

provided K and L are literals and there is an mgu � suh that K� = :L� and

the sequene is not losed.

The standard �rst-order tableaux alulus onsists of the rules �-, and �-

expansion (see Setion 2.4) whih are adapted to pairs and the above three rules

-Expansion, Æ-Expansion and Branh-Closing.

Theorem 3.6.5 (Free-variable First-Order Tableaux is Sound and Complete).

A formula � (without equality) is valid i� free-variable tableaux omputes a

losed state out of f(:�)g.

Example 3.6.6.

1: :[9w8xR(x;w; f(x;w)) ! 9w8x9yR(x;w; y)℄

2: 9w8x R(x;w; f(x;w)) 1

1

[�℄

3: :9w8x9y R(x;w; y) 1

2

[�℄

4: 8x R(x; ; f(x;)) 2() [Æ℄

5: :8x9y R(x; v

1

; y) 3(v

1

) [℄

6: :9y R(g(v

1

); v

1

; y) 5(g(v

1

)) [Æ℄

7: R(v

2

; ; f(v

2

;)) 4(v

2

) [℄

8: :R(g(v

1

); v

1

; v

3

) 6(v

3

) [℄

7. and 8. are omplementary (modulo uni�ation):

v

2

= g(v

1

); = v

1

; f(v

2

;) = v

3

is solvable with an mgu � = fv

1

7! ; v

2

7! g(); v

3

7! f(g();)g, and hene,

T� is a losed (linear) tableau for the formula in 1.

Problem: Stritness for is still inomplete. For instane, onstruting a

losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying -expansion twie on one path.

Semanti Tableau vs. Resolution

106 CHAPTER 3. FIRST-ORDER LOGIC

1. Tableau: global, goal-oriented, \bakward".

2. Resolution: loal, \forward".

3. Goal-orientation is a lear advantage if only a small subset of a large set

of formulas is neessary for a proof. (Note that resolution provers saturate

also those parts of the lause set that are irrelevant for proving the goal.)

4. Resolution an be ombined with more powerful redundany elimination

methods; beause of its global nature this is more diÆult for the tableau

method.

5. Resolution an be re�ned to work well with equality; for tableau this seems

to be impossible.

6. On the other hand tableau aluli an be easily extended to other logis;

in partiular tableau provers are very suessful in modal and desription

logis.

3.7 First-Order CNF Transformation

Similar to the propositional ase, �rst-order superposition operates on lauses.

In this setion I show how any �rst-order sentene an be eÆiently transformed

into a CNF, preserving satis�ability. To this end all existentially quanti�ed

variables are replaed with so alled Skolem funtions. Similar to renaming this

replaement only preserves satis�ability. Eventually, all variables in lauses are

impliitly universally quanti�ed.

As usual, the CNF transformation is done by a set of rules. All rules known

from the propositional ase apply. Further rules deal with the quanti�es 8, 9

and some of the propositional rules need an extension in order to ope with

�rst-order variables.

The �rst set of rules eliminates > and ? from a �rst-order formula.

ElimTB1

�[(� ^ >)℄

p

)

CNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

CNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

CNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

CNF

�[�℄

p

ElimTB5

�[:?℄

p

)

CNF

�[>℄

p

ElimTB6

�[:>℄

p

)

CNF

�[?℄

p

3.7. FIRST-ORDER CNF TRANSFORMATION 107

ElimTB7

�[f8; 9gx:>℄

p

)

CNF

�[>℄

p

ElimTB8

�[f8; 9gx:?℄

p

)

CNF

�[?℄

p

where the expression f8; 9gx:� overs both ases 8x:� and 9x:�. The next

step is to rename all variable suh that di�erent quanti�ers bind di�erent vari-

ables. This step is neessary to prevent a later on onfusion of variables.

RenVar

�)

CNF

��

for � = fg

One the variable renaming is done, renaming of bene�ial subformulas is

the next step. The mehanism of renaming and the onept of a bene�ial sub-

formula is exatly the same as in propositional logi. The only di�erene is

that renaming does introdue an atom in the free variables of the respetive

subformula. When some formula is renamed at position p an atom P (~x

n

),

~x

n

= x

1

; : : : ; x

n

replaes j

p

where fvars(j

p

) = fx

1

: : : ; x

n

g. The respetive

de�nition of P (~x

n

) beomes

def(; p; P (~x

n

)) :=

8

<

:

8 ~x

n

:(P (~x

n

)! j

p

) if pol(; p) = 1

8 ~x

n

:(j

p

! P (~x

n

)) if pol(; p) = �1

8 ~x

n

:(P (~x

n

)$ j

p

) if pol(; p) = 0

and the rule SimpleRenaming is hanged aordingly.

SimpleRenaming �)

CNF

�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n

℄

p

n

^ def(�; p

1

; A

1

) ^

: : : ^ def(�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n�1

℄

p

n�1

; p

n

; A

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the A

i

= P

i

(x

i;1

; : : : ; x

i;k

i

) where fvars(�j

p

i

) = fx

i;1

; : : : ; x

i;k

i

g and all P

i

are di�erent and new to �

Negation normal form is again done as in the propositional ase with addi-

tional rules for the quanti�ers.

ElimEquiv �[(�$)℄

p

)

CNF

�[(�!) ^ (! �)℄

p

ElimImp �[(�!)℄

p

)

CNF

�[(:� _)℄

p

PushNeg1 �[:(� _)℄

p

)

CNF

�[(:� ^ :)℄

p

PushNeg2 �[:(� ^)℄

p

)

CNF

�[(:� _ :)℄

p

108 CHAPTER 3. FIRST-ORDER LOGIC

PushNeg3 �[::�℄

p

)

CNF

�[�℄

p

PushNeg4 �[:8x:�℄

p

)

CNF

�[9x::�℄

p

PushNeg5 �[:9x:�℄

p

)

CNF

�[8x::�℄

p

In propositional logi after NNF, the CNF an be generated using distribu-

tivity. In �rst-order logi the existential quanti�ers are eliminated �rst by the

introdution of Skolem funtions. In order to reeive Skolem funtions with few

arguments, the quanti�ers are �rst moved inwards as far as passible. This step

is alled mini-soping.

MiniSope1 �[8x:(

1

Æ

2

)℄

p

)

CNF

�[(8x:

1

) Æ

2

℄

p

provided Æ 2 f^;_g, x 62 fvars(

2

)

MiniSope2 �[9x:(

1

Æ

2

)℄

p

)

CNF

�[(9x:

1

) Æ

2

℄

p

provided Æ 2 f^;_g, x 62 fvars(

2

)

MiniSope3 �[8x:(

1

^

2

)℄

p

)

CNF

�[(8x:

1

) ^ (8x:

2

)�℄

p

where � = fg, x 2 (fvars(

1

) \ fvars(

2

))

MiniSope4 �[9x:(

1

_

2

)℄

p

)

CNF

�[(9x:

1

) _ (9x:

2

)�℄

p

where � = fg; x 2 (fvars(

1

) \ fvars(

2

))

The rules MiniSope1, MiniSope2 are applied modulo the ommutativity

of ^, _. One the quanti�ers are moved inwards Skolemization an take plae.

Skolemization

�[9x; ℄

p

)

CNF

�[fx 7! f(y

1

; : : : ; y

n

)g℄

p

provided there is no q, q < p with �j

q

= 9x

0

:

0

, fvars(9x:) = fy

1

; : : : ; y

n

g,

arity(f) = n is a new funtion symbol to � mathing the respetive sorts of the

y

i

with range sort sort(x)

Example 3.7.1 (Mini-Soping and Skolemization). Consider the simple for-

mula 8x:9y:(R(x; x) ^ P (y). Applying Skolemization diretly to this formula,

without mini-soping results in

8x:9y:(R(x; x) ^ P (y)))

CNF,Skolemization

8x:(R(x; x) ^ P (g(x))

for a unary Skolem funtion g beause fvars(9y:(R(x; x)^P (y))) = fxg. Apply-

ing mini-soping and then Skolemization generates

8x:9y:(R(x; x) ^ P (y)))

�

CNF,MiniSope2,1

8x:R(x; x) ^ 9y:P (y)

)

CNF,Skolemization

8x:R(x; x) ^ P (a)

3.7. FIRST-ORDER CNF TRANSFORMATION 109

for some Skolem onstant a beause fvars(9y:P (y)) = ;. Now the former for-

mula after Skolemization is seriously more omplex than the latter. The former

belongs to an undeidable fragment of �rst-order logi while the latter belongs

to a deidable one (see Setion 3.14).

Finally, the universal quanti�ers are removed. In a �rst-order logi CNF any

variable is universally quanti�ed by default. Furthermore, the variables of two

di�erent lauses are always assumed to be di�erent.

RemForall

�[8x: ℄

p

)

CNF

�[℄

p

The atual CNF is then done by distributivity.

PushDisj �[(�

1

^ �

2

) _ ℄

p

)

CNF

�[(�

1

_) ^ (�

2

_)℄

p

Algorithm 6: nf(�)

Input : A �rst-order formula �.

Output: A formula in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB8(�)) do ;

2 RenVar(�);

3 SimpleRenaming(�) on obvious positions;

4 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

5 whilerule (ElimImp(�)) do ;

6 whilerule (PushNeg1(�),: : :,PushNeg5(�)) do ;

7 whilerule (MiniSope1(�),: : :,MiniSope4(�)) do ;

8 whilerule (Skolemization(�)) do ;

9 whilerule (RemForall(�)) do ;

10 whilerule (PushDisj(�)) do ;

11 return �;

Theorem 3.7.2 (Properties of the CNF Transformation). Let � be a �rst-order

sentene, then

1. nf(�) terminates

2. � is satis�able i� nf(�) is satis�able

Proof. (Idea) 1. is a straightforward extension of the propositional ase. It is

easy to de�ne a measure for any line of Algorithm 6.

2. an also be established separately for all rule appliations. The rules SimpleR-

enaming and Skolemization need separate proofs, the rest is straightforward or

opied from the propositional ase.

